
Chapter 2 

Theory 

In this chapter we examine Standard Model cross-section’ predictions for the pro- 

duction of charm in hadronic collisions. The inclusive reaction can be written as 

follows: 

HB+HT+ CZ+X’ +H,$H~+X, (24 

where HB (HT) is the beam (target2) hadron, H, (HF) is any hadron containing a c 

(3) valence (anti)quark, and X ( ) d t z’ in ica es all non-charm hadrons (partons) in the 

final (intermediate) state. Unitarity of the hadronization process (depicted by the 

arrow on the right) requires that it occur with 100% probability;3 more interesting is 

the hard scattering (left arrow) of HB and HT’S constituent partons, resulting in ci? 

pair production. Not depicted are the weak and electromagnetic processes by which 

the charm and other unstable hadrons decay into stable particles. 

‘See Sections 8.1 and 9.1 for the relevant definitions. 
2Although the E769 target is comprised of various nuclei, the target hadron is considered a 

nucleon. Support for the independence of charm production on the nuclear environment is given in 
Section 8.1. 

3The hadronization process as written above neglects the contribution of charmonium states to 
the total charm particle cross-section. At the center-of-mass energy achieved by E769, however, this 
contribution is negligible. 
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2.1 Motivation 

Calculation of a scattering amplitude, even in the context of non-relativistic time- 

independent quantum mechanics, is a problem often made tractable only through 

the use of perturbative methods, i.e., expression of the amplitude as a power-series 

expansion in some small parameter (say, g). Results obtained via this procedure 

are necessarily approximate; their reliability (at any given order in g) is contingent 

upon whether and/or how rapidly the series converges. For this reason, an important 

consideration is the “smallness” of g, which must be sufficient to render insignificant 

(at some desired level of accuracy) the error associated with truncation of the series. 

In practice, if the magnitude of the (n + l)th-order term in the series cannot be 

well-estimated, it will be difficult to determine whether g is small enough to make an 

nth-order calculation useful. 

For a relatively simple case, such as scattering of a non-relativistic electron by 

a static charge distribution, iterative procedures (e.g., the Born approximation) can 

be used to obtain a solution to Schrodinger’s equation expressible in powers of I&, 

the scattering potential. In treating a more complicated case, however, for example 
inelastic scattering in which the destruction and creation of particles are involved, 

we make use of the more sophisticated formalism underlying the Standard Model of 

particle interactions, namely quantum field theory. In this picture, each fundamental 

interaction is described as acting via the exchange or “mediation” of a particular 

(set of) vector boson(s). Feynman, in an approach directly motivated by his “many- 

paths” formulation of quantum mechanics, developed a prescription for grouping and 

calculating all paths” contributing to a particular physical process to a given order in 

the coupling strength g of the theory. Each topologically distinct path, integrated over 

all internal momenta, can be represented by a Feynman diagram, a simple schematic 

‘In this context, “p ath” indicates a particular evolution in spacetime (generally entailing particle 
creation, destruction, and exchange) connecting sets of specified initial and final particle states. 
These paths must be consistent with the conservation laws obeyed by the particular interaction(s) 
involved and are most usefully evaluated in momentum space, with definite 4-momenta (and possibly 
other quantum numbers) assigned to the initial, final, and intermediate states. 
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in which the number of vertices indicates the relevant order in perturbation theory.5 

For a particular process, Feynman diagrams are readily written down and connected 

to the corresponding integrals via a set of Feynman rules; the amplitude for the 

process is then given by the sum of all contributing diagrams. 

A measurable quantity such as a cross-section is proportional not to an amplitude, 
which is in general a complex number, but rather to the product of an amplitude and 
its complex conjugate (i.e., the square of the amplitude’s norm). Therefore, economy 

of expression dictates that the resulting perturbative expansion be expressed as a 

series in a parameter proportional to g2, which is designated Q. For example, the fine- 

structure constant CY (- &,) of electrody namics is equal (in CGS units) to $, where 

the elementary charge e plays the role of the coupling strength g. We hereafter use 

the term “coupling strength” to indicate CY rather than g, unless otherwise specified. 

In this chapter, we concern ourselves with the hadronic production of charm, 

a phenomenon caused by strong interactions. Although in principle this physics is 

sensitive at some level to electroweak effects, the extreme relative weakness of all other 

interactions with respect to the strong6 allows us to neglect consideration of these 

corrections in the following discussion. The Feynman rules needed to generate the 

relevant diagrams are therefore all derivable from a Lagrangian containing two classes 

of terms: (1) kinetic terms governing the propagation of free quarks and (2) terms 

associated with the SU(3) 1 co or symmetry underlying Quantum Chromodynamics 

(&CD). These latter include terms corresponding to quark-gluon coupling, gluon- 

gluon coupling, and gluon kinetic energy. 

“Canonical” perturbative QCD predictions for charm production are provided 

by Nason, Dawson, and Ellis (NDE), who have published full next-to-leading order 
(NLO) calculations (i.e., to order a:) of total and differential cross-sections for the 

hadronic production of heavy quarks [36, 371. The theorists Mangano, Nason, hdolfi, 

and Frixione (in various permutations) have provided follow-up studies of these results 

“For purposes of this discussion, we assume that all vertices in the contributing diagrams corre- 
spond to a single coupling strength g. 

‘Relative interaction strength depends on the distance scale at which the comparison is made, as 
will be discussed further in this chapter. At scales relevant to charm production, the strong coupling 
QS is more than fifty times greater than the electromagnetic coupling a. 
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as well [32, 26, 381. In th e o f 11 owing sections, we discuss issues surrounding these 

calculations, followed by the numerical predictions themselves. 

2.2 Renormalization 

Evaluation of Feynman integrals is complicated by the presence of divergences, which 

can be classified into two types: ultraviolet and infrared. The former (latter) are asso- 

ciated with integrations over internal loop momenta k@ which diverge as k” + oo (O).7 
Such infinities are a typical feature of quantum field theories, including &CD. The 

procedure known as renormalization, by which ultraviolet divergences are subtracted 

order-by-order in perturbation theory, rendering predictions finite, is well known. 

Without delving too deeply into technical details, we discuss some features of renor- 

malization which are relevant to the interpretation of QCD predictions for charm 

hadroproduction. 

Essentially, if a theory is renormalizable, each divergent diagram can be associated 

in a consistent manner with one or more of the input parameters of the theory (e.g., 

particle mass, field normalization, coupling strength) in such a way that these “bare” 

parameters absorb the infinities and yield analogous “renormalized” quantities which 

are finite. Removal of these infinities alone, however, does not completely determine 

these quantities; there remains some freedom in deciding what finite contributions 

of the divergent graphs will be absorbed into the definitions of the renormalized pa- 

rameters. Specific prescriptions for eliminating this residual arbitrariness are called 

renormalization schemes and consist of fixing the values of renormalized parameters 

at particular mass scales. The coupling strength cy is defined in terms of a sum of 

corrected vertex diagrams evaluated at a mass scale pi, which we call the renormal- 

ization scale. 

An expression for a physical quantity, written as an expansion in CL: so defined, 

therefore includes terms which depend on i.LR, typically logarithmically. The scale 

at which we choose to “define the theory”, however, is arbitrary; this expression, 

71flight quarks are treated as massless, infrared divergences also include infinities resulting from 
collinear emission by a quark of a gluon; these are called collinear or mass divergences. 
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evaluated at a particular order in perturbation theory, must be independent of PR. 

This requirement’ allows us to make the scale dependence of cy explicit. The resulting 

“running” coupling constant a(p), evaluated at PR, can then be associated directly 

with each corrected vertex in a given diagram. 

The expression for the dimensionless coupling cu(b) must include another mass 

scale; for this purpose, the fundamental scale AQCD is introduced. Although the 

precise definition of AQCD depends on the particular renormalization scheme chosen, 

it corresponds to the mass scale at which the coupling cy blows up9 (more on this 

phenomenon later), as can be seen by the following leading-order expression: 

44 = 
1 

b ln(dAQCD)’ 
(2.2) 

where bo is a constant and the subscript “S” has been added to Q to indicate that 

the discussion is now confined to the strong coupling of &CD. AQCD is a parameter 

than can be determined experimentally; it is on the order of a few hundred MeV.l’ 

We can also express CYS in the alternative form 

G4 = 
%&R) 

1 -t b0 W(PR) lnb2/&> 

= as - b0 at ln(p’/pi) + . . . , (2.3) 

which is more useful in evaluating the behavior of CYS in the neighborhood of our 

chosen “subtraction point” ,uR. 

sThe derivation of the renormalization group equation follows an equivalent line of argument. 
‘Actually , this characterization of hQcD is misleading for two reasons. First, as as grows close to 

and beyond unity, the expression for its scale dependence, obtained from some finite order calculation 
in perturbation theory, becomes meaningless. Second, the scale dependence of as is impacted 
by threshold effects; as p increases into a regime where heavy quarks of a new Aavor contribute 
significantly to loop corrections, the values of bo and AQCD change. This effective AQCD is specified 
by replacing the generic subscript with the number of “active” flavors appropriate to a given physics 
process. For charm production, therefore, ha is the most relevant incarnation of the fundamental 
QCD scale. 

loTaking AQCD to represent the mass scale of &CD, we obtain a corresponding distance scale on 
the order of a fermi and time scale on the order of 10e2’ seconds. 
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Up to this point, no physical interpretation has been given to the scale dependence 

of as. After all, the scale PR at which we choose to evaluate as is arbitrary; to a 

given order in perturbation theory, calculated predictions of measurable quantities 

are insensitive to our choice. In order that perturbation theory be useful, however, 

a value of ,uR must be chosen such that k~th the expansion parameter CY&R) and 

the logarithmic dependencies on PR are small. Loosely speaking, this condition holds 

when PR is on the order of the mass scale relevant to the physical process in question.” 

It is therefore common to speak of Q&L) as the eflective strong coupling at the physical 
mass scale p. 

The scale dependence of crs described above has one feature that distinguishes 

the strong interaction from the other forces of nature in a profound way: the effective 

coupling decreases monotonically as the mass (distance) scale increases (decreases). 

This behavior, known as asymptotic freedom, can be attributed to the presence of 

gluon-gluon coupling, or in other words to the fact that the vector bosons mediating 

the strong interaction are themselves carriers of color charge. Asymptotic freedom 

has the consequence that the properties of hadronic bound states cannot be treated 

perturbatively. On the basis of non-perturbative results,12 however, it is widely be- 

lieved that asymptotic freedom provides an explanation for the phenomenon of color 

confinement, i.e., the observation that all particles which are stable (with respect to 

the time scale of the strong interaction) are color-neutral. To zeroth order, this limits 

the possible hadronic states to baryons, mesons, and glueballs. For strong-hard- 

scattering processes, however, perturbative QCD calculations become more reliable 

as the mass scale (e.g., Q”) grows. 

In their calculations of charm absolute (differential) cross-sections, NDE choose 

j.6~ to be equal to m, (24 rnz + Ic$); a central value of 1.5 GeV is assigned to m,. 

(Mangano, Nason, and Ridolfi (MNR) modify this choice in calculating differential 

“In general, a particular process is characterized by more than one mass scale. In the case of 
charm production, both the charm quark mass m, and the 4-momentum transfer Q2 define physical 
mass scales which are not necessarily similar in magnitude. Furthermore, if we are interested in the 
differential cross-section for charm quark production, the transverse momentum kT of the charm 
quark also introduces a scale. 

“For example, lattice QCD calculations. 
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cross-sections, in which case they let PR equal Jm.1 At this scale, CYS is ap- 

proximately $, too large to dismiss the possibility that higher-order terms comprise 

significant corrections to NLO results. 

Although the NLO cross-section is independent of PR to order CK~, residual de- 

pendence of order a;l remains. I3 NDE use the sensitivity of their results to factor- 

of-two variation of PR as an ansatz estimate of the error associated with truncation 

of the perturbative series at NLO. The justification for this estimate is that since 

the full calculation to order cri (NNLO) must be independent of PR, uncalculated 

NNLO terms must cancel the observed variation and are therefore similar in magni- 

tude. But the cancellation terms thus gauged do not depend on the tree-level NNLO 

contributions (e.g., two gluon radiation) and indeed do not even include all of the 

NNLO PR-dependence (e.g., that arising from two-loop renormalization of leading- 

order (LO) tree-level diagrams). The upper limit allowed by this uncertainty actually 
corresponds to adding to the NLO result a NNLO contribution estimated to be equal 

to the NLO contribution but enhanced through multiplication by an artificially large 

factor (instead of the “small” as(m,)). Despite these caveats, cross-section uncer- 

tainties associated with variation of PR is quantified along with other theoretical 

uncertainties in Sections 2.6.1 and 2.6.2. 

2.3 Hard-scattering processes 

The relevant distance scale for charm production in hadronic collisions is at most a 

small fraction of a fermi, indicating that the underlying processes must be described 

as interactions between the constituent partons of the colliding hadrons. LO diagrams 

are of order CY:.~~ At LO, two processes contribute, namely gluon-gluon fusion and 

quark-antiquark annihilation; the relevant diagrams are shown in Fig. 2.1. 

As mentioned previously, NDE have published full NLO calculations of total and 

13This higher-order PR dependence arises in using the renormalized Qs(pR) in evaluating NLO 
tree-level diagrams. 

“Actually the square of the amplitudes represented by the LO diagrams are proportional to a:. 
We will stick’to the usage in the text, however, in which we equate a diagram with a physical process, 
which we in turn equate with that process’ effect on the charm cross-section. 
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Figure 2.1: LO diagrams. Light (heavy) lines indicate light (charm) quarks. 

differential cross-sections for the hadronic production of heavy quarks. At this order 

(a:), gg fusion and qq annihilation continue to be the most important processes; the 

extra vertices in these NLO diagrams are due to gluon radiation. Appearing for the 

first time at NLO is quark-gluon fusion, the net effect of which is only a minor (neg- 

ative) adjustment to the total cross-section. Also contributing are diagrams formally 

of order cy;Is; interference between these “virtual” diagrams and corresponding LO pro- 

cesses lead to NLO terms. A sampling of some NLO diagrams is shown in Fig. 2.2. 

At NLO, the first loop corrections to the vertices and particle propagators appear. As 

discussed in the previous section, the infinities associated with these Feynman inte- 

grals are absorbed into the renormalized, scale-dependent coupling cr.&). Although 

these loops are not explicitly shown in any of the pictured diagrams, the vertices are 

understood to include them. 

Let a generic parton-parton interaction resulting in c? production be represented 

by Fig. 2.3. The momenta of the partons from the beam and target hadrons are (I’B 

and &, respectively. Expressions for charm production cross-sections are simplest in 

the partonic center-of-mass frame, in which qB = qT 3 q. Treating the partons as 

massless, we obtain a partonic center-of-mass energy fi of 2q. Note that in this frame, 

s is equal as well to the 4-momentum transfer Q 2. The threshold energy for production 

of a CZ pair is 2m,; it is convenient to work with the dimensionless parameter p E 

4mz/s, which has a value of 1 at threshold and decreases with increasing s. The 
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Figure 2.2: NLO diagrams. See Fig. 2.1 caption. 

shaded oval in Fig. 2.3 represents the superposition of all diagrams contributing to a 

given order in perturbation theory. The observed charm quark (or antiquark) has a 

momentum g; the unobserved charm (and possibly a radiated gluon) account for the 

rest of the final state (labelled CC). 

Total cz production cross-sections (integrated over all i) depend only on p and 

m,; single-particle inclusive differential cross-sections, on the other hand, depend 

additionally on the magnitude of z and its angle with respect to the axis formed by 

the colliding partons. 

In their differential cross-section paper, NDE point out the presence of logarithmic 

terms which become large when kT >> m,. In this limit, the heavy quark becomes 

effectively light, leading to final-state infrared divergences associated with gluon emis- 

sion. In the kinematic range accessible to E769, however, charm quark kT never 

greatly exceeds m,. 

2.4 Factorization 

The hard-scattering amplitudes discussed in the previous section are alone not suffi- 

cient to obtain cross-section predictions for two reasons. First, in the laboratory, it 

is hadrons (e.g., r, K, p) that are accelerated into one another, not partons. Second, 

there is an additional class of NLO diagrams which must be accounted for in the 
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Figure 2.3: Schematic of hard-scattering kinematics. 

full cross-section calculation: namely, diagrams in which one of the incoming partons 

radiates a gluon before the primary interaction occurs. These diagrams are infrared 

divergent, and must be regularized before a sensible result can be obtained. 

Through a procedure known as factorization, both of these obstacles are re- 

moved. The hard-scattering amplitudes take as their “inputs” only the identity and 

momenta” of the initial state partons. Therefore, if, for each colliding hadron, the 

momentum distributions of each type of constituent parton are known, then the total 

cz cross-section can be written as a convolution of these parton distribution functions 

(PDFs) with the hard-scattering cross-sections obtained by direct evaluation of the 

Feynman integrals. 

In a procedure analogous to renormalization, infrared divergences associated with 

soft gluon emission are absorbed into the definition of the PDFs, rendering the afore- 

mentioned convolution products finite. As with renormalization, this subtraction of 

infinities must be done at some mass scale, which we label the factorization scale PF. 

Logarithmic dependencies on j.4~ are introduced into the PDFs, leading to concomi- 

tant uncertainties in the cross-section predictions. 

“Other cpantum numbers are averaged over. 
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In this formalism, all partons within a given hadron are treated as parallel streams, 

the sum of whose longitudinal momenta is simply the hadron momentum p’B or J?*; 

transverse components of the parton momenta are treated as zero.16 PDFs are there- 

fore given as functions of 2, the fraction of the hadron’s momentum carried by the 

parton. More than one of each type of parton can be present in a given hadron; 

PDFs are therefore actually number densities, proportional at a given z value to 

the probability of finding a parton of momentum fraction z, where some scattering 

process provides the means of “finding”. Measurement of the PDFs therefore entails 
measuring scattering cross-sections, characterized by a certain 4-momentum transfer 

Q" = P;, and unfolding from the aforementioned convolution the formulae relevant 

to the scattering involved. 

The crux of the factorization theorem is that the PDFs so obtained are independent 
of the process used to measure them. This allows us to test, for example, QCD 

predictions for charm production using PDFs obtained by a number of various means: 

deep inelastic scattering of leptons (charged or neutral) on hadrons or production in 

hadron-hadron collisions of prompt photons or Drell-Yan pairs. In practice, PDFs 

obtained by simultaneous fits to data from some or all of the above processes are used 

WI * 
This independence of PDFs on the “fate” of the extracted parton means that 

their Q2-dependence is purely a QCD phenomenon, in particular a consequence of 

the scale dependence of crs. To illustrate this, consider the probability of extracting 

from a proton a d quark with momentum fraction z. In addition to the contribution of 

the valence d, we must account for the dTi pairs produced by constituent gluons. Any 

gluon with momentum fraction x’ > x is a potential additional source of the desired d. 
Therefore, beginning at the one-loop level, the coupling strength ~1s directly impacts 

PDF evolution. 
Equation 2.4 gives the single-quark charm differential cross-section; the total cZ 

cross-section is obtained by integrating the charm momentum ic’ over the full solid 

angle as well as the range in magnitude allowed by the kinematics. 

“See Section 2.5 for a discussion of the consequences of relaxing this assumption. 
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d3a 
-= dxBdxT d3cij(XBPB, XTPtarget, grmc, PRY PF) 

d3k d3k I 
FiB(XB, /JF)FjT(“T,PF) 

(2.4 

In this equation, &ij is the hard-scattering cross-section for partons i and j (from which 

infrared singularities have been subtracted) and FiBtT1 is the beam (target) hadron 

PDF for constituent parton i. The summation runs over each two-parton combination 

contributing to charm production; the integrals are over the momentum fractions of 

each parton. The momentum of the beam (target) parton is Xgp~ (zTPtarget), where 

PB (Ptatget ) is the momentum of the beam (target) hadron. Note that if the partons 

are treated as massless, the hadronic and partonic center-of-mass energies (a and 

fi, respectively) are related by 

s = XBXT~. (2.5) 

The differential cross-section as written in Eq. 2.4 is not Lorentz invariant; all quan- 

tities are understood to be evaluated in the hadronic center-of-mass frame. The 

longitudinal momentum in this frame is converted to the dimensionless Feynman-x 

variable (zF> by dividing it by a/2, half th e available energy, leading to the range 

-15 x1; 5 1. 

Use of this factorized formula assumes that certain non-perturbative contributions 

to charm production, some of which will be discussed in the following section, are 

small with respect to production involving one parton from each hadron. Collins, 

Soper, and Sterman examined the effect of these competing processes in heavy-quark 

production; their conclusion was that these contributions are suppressed by powers 

of the ratio m/M, where m is a typical hadronic mass scale and M is the mass of 

the produced heavy quark [22]. Depending on how we interpret m, the charm quark 

mass (m, 2: 1.5 GeV) can lead to suppression factors not particularly far from unity; 

it therefore remains an open question whether m, is large enough to justify use of the 

factorization formalism. 
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2.5 Non-perturbative effects 

As mentioned previously, a charm quark, once produced, must hadronize to some- 

thing. As long as the time scale over which this process occurs is much longer than the 

strong interaction time scale characterizing the production process itself, the total ci? 

cross-section calculated ignoring the subsequent histories of the charm quarks should 

be valid, i.e., equal to one half the total charm plus anticharm particle cross-section. 

Interactions between a charm quark and other quarks in the event, however, will 

have a measurable impact on the momentum distribution of the corresponding charm 

hadron, leading to differences in the predicted differential cross-sections of charm 

quarks and, for example, charm mesons. In this section, we give only a qualitative 

discussion of these effects, which in general involve the exchange of soft gluons and 

therefore cannot be treated by perturbative methods. In addition, we mention some 

potential corrections to the factorized perturbative formula motivated in the previous 

section. 

We begin with initial-state effects, some of which in principle can lead to additional 

mechanisms for charm production beyond those accounted for in the perturbative 

calculation. The first of these is flavor excitation. In this process, a cz pair intrinsic 

to one of the initial-state hadrons (i.e., “sea” as opposed to valence quarks) is excited 

by interactions with the other hadron (via gluon exchange), giving the virtual heavy 

quark pair enough energy to reach its mass shell. The results of an early theoretical 

study by Combridge suggested that the charm cross-section attributable to flavor 

excitation alone was potentially greater than that from LO “flavor creation” processes 

[23]. Subsequent investigations showed, however, that this process, whose diagram is 

topologically equivalent to standard gg fusion graphs, is thereby included at some level 

in the perturbative result [22]. NDE therefore calculate cz cross-sections using PDFs 

with no explicit charm sea component, including flavor excitation as a higher-order 

correction (i.e., as a component of gg fusion). More recently, Tung and collaborators 

have developed a method of fully incorporating both flavor creation and excitation 

by explicitly subtracting from the sum of the two processes the region of kinematic 

overlap. The net addition due to flavor excitation is found to grow large only for 
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production well above threshold (i.e., kT >> m,);” we therefore do not expect the 

E769 results to be sensitive to this effect. 

Related to the flavor excitation process is the concept of intrinsic charm, intro- 

duced by Brodsky and collaborators [2l]. In this picture, hadronic wavefunctions 

contain Fock state components in which a ci? pair carries most of the hadronic mo- 

menta. For example, a proton juud > would contain a luudcz > component. Note 

that these charm components are not equivalent to the virtual charm sea generated 
by QCD evolution of the PDFs. Originally motivated by CERN-ISR measurements 

of anomalously high charm particle cross-sections at high XF,18 the intrinsic charm 

component of the proton was estimated to be on the order of l-2%. Recent (null) 

measurements of diffractive charm production in 800 GeV p-Si interactions, however, 

have been interpreted as imposing an upper limit of 0.270 on the intrinsic charm 

component of the proton [31]. 

The longitudinal (XF) and transverse (pT) momentum distributions of charm par- 

ticles should in principle differ from those predicted for charm quarks, due to the 

interaction of the latter with other quarks in the event, both spectator valence quarks 

and light QV pairs created from the vacuum. The process by which charm quarks coa- 

lesce with light quarks to form color-neutral bound states is known as hadronization 

or fragment ation. Even before this stage is reached, however, the factorized formula 

developed above may neglect an important input to predicting the charm quark distri- 

butions, namely the intrinsic pT of constituent partons. Cn the basis of the transverse 

spatial confinement of the partons, we might expect transverse momenta on the order 

of AQ~D - a few hundred MeV. MNR, in a study based on a HERWIG Monte Carlo 

simulation, find that a LO calculation assuming an average intrinsic pT of 1.5-1.7 GeV 

is sufficient to reproduce MC results for charm quark distributions (which they admit 

should not be taken as a universal benchmark) [32]. The effect of this intrinsic pT is a 

“uniform smearing” of the transverse distributions; for a cross-section exponentially 

17ActuaIly, this method was first developed to describe heavy quark leptoproduction [5]. An 
analogous treatment of hadroproduction is in progress; preliminary results were presented at DPF96 

WI- 
18For an extensive review of early charm hadroproduction measurements, see the two review 

articles given in [42]. 
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falling with pT, the net effect of such smearing is a hardening of the distribution. 

In treating the effect of hadronization on charm distributions, the assumption of 

universal fragmentation is sometimes made. In this picture, the ratio of the charm 

hadron momentum to that of its “parent” charm quark is given by a probability 

distribution (the fragmentation function) which is independent of the process by 

which the charm quark is produced, for example through e+e- collisions. The charm 

quark is essentially seen as the progenitor of an isolated jet; its momentum is degraded 

by the energy lost in the creation of light q?j pairs. In hadronic collisions, however, 

the environment is sufficiently different to call this procedure into question.lg For 

example, coupling between low-kT charm quarks and co-moving spectator quarks can 

lead to charm hadrons whose momenta are enhanced with respect to that of their 

charm parents; this effect is known as “color-dragging” and is related to another 

consequence of charm-spectator coalescence, namely the “leading-particle” effect. 

A leading charm particle is defined, for zF > 0, as one which shares at least 

one light valence quark or antiquark flavor with the beam particle. An example of a 

leading particle in r --induced production is D-. At high XF especially, we expect the 

proximity of the charm quark to the forward spray of beam fragments to lead to an 

enhanced cross-section for charm species which result from hadronization with these 

co-moving spectators. This effect has been measured to be significant and to increase 

at high 2~. 2o In this thesis we will make a distinction between non-leading and 

neutral-leading particles. A non-leading particle is defined as the charge conjugate 

of a leading particle (e.g., r--induced Df mesons). 21 A neutral-leading particle, on 

the other hand, is defined as any particle for which both particle and antiparticle are 

not leading (e.g., K+-induced Do mesons). For species which are otherwise similar, a 

leading particle will be more likely to have undergone color-dragging than non-leading 

or neutral-leading particles; therefore, we expect leading particles to exhibit harder 

“MNR have also pointed out that application of fragmentation functions to longitudinal dis- 
tributions is not boost-invariant and can lead to significantly different results in different frames 

WI. 
20See Section 8.3.4 and references quoted therein. 
211n the case of a neutral beam particle, this definition must be modified, as both particle and an- 

’ tiparticle can be leading (e.g., *‘-induced D+ and D- mesons). We state this only for completeness, 
as ET’69 uses only charged beams. 
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zF distributions. 

2.6 Predictions and uncertainties 

MNR have made available the program HVQMNR, which they used to generate the 

NLO QCD heavy-quark cross-section predictions (absolute and differential) presented 

in [32]. 22 This program allows for variation of beam energy (EB), the identities of the 

initial-state hadrons (constrained by the availability of the appropriate PDFs), &co, 

j.LR, j.&F, and the mass of the produced heavy quark. In this section we employ this 

program, using the default parameters listed below (those of MNR), to obtain predic- 

tions with which to compare our measured forward and differential cross-sections.23 

Eg = 250 GeV 

beam particle (PDF) = K- (SMRS2), p (HMRSB) 

target particle (PDF) = N (HMRSB) 

PR = PO 
PF = @to 

‘O = Ti$Tiii$ ~fE~ia1 1 
m, = 1.5 GeV 

ASa = 122 MeV 

‘As is connected to the more relevant A3 through the NDE renormalization scheme. 

PDFs are available for the pion and proton, but not for the kaon; predictions are 

therefore made only for charm production induced by 7rr- and P.~” MNR use SMRS2 

(HMRSB) parametrizations of rr- (p) PDFs; these PDF sets are defined and discussed 

in [28] and are plotted in Fig. 2.4 at Q’ = 4 GeV2. 

22The NLO QCD results published by MNR differ from those of NDE due to the former’s use of 
more modern PDFs. 

23We verified our correct use of HVQMNR by reproducing numerical results for absolute and dif- 
ferential cross-sections presented by MNR in [32] and in their follow-up paper [26], for which they 

I were joined by Frixione (FMNR). 
2’Although K+ PDFs should be completely determined by those for x-, HVQMNR as written 

does not differentiate between the two; therefore, only predictions for *--induced production are 
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Figure 2.4: Parton distribution functions at Q2 = 4 GeV2. 

Precise comparison of the contributions different processes make to charm pro- 

duction is not possible until the hard-scattering cross-sections are convolved with the 

appropriate PDFs. Assuming for the moment that amplitudes for all processes are 

equal and independent of p (in the production region p < l), we can estimate the 

relative importance of gg fusion and $j annihilation by direct inspection of Fig. 2.4. 

For E769, fi = 21.7 GeV, leading to the relation 

’ A general feature of PDFs is that they fall very rapidly with rising z; therefore, 

available. 
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given our aforementioned assumption, charm production should be dominated by 

those regions in the 28-3~ plane close to the hyperbola defined by x~x~ = 0.019. If 

we further assume that in this neighborhood the PDFs are falling exponentially, we 

find that most production occurs at the point on the hyperbola where x8 = XT = 

&ziG = 0.14. c omparing g(x) and q(x) d’ t ‘b t is ri u ions at xjj = 0.14, we expect gg 

fusion to dominate over qq annihilation, especially in pN collisions, where the only 

source of antiquarks is the sea. 

This conclusion is borne out by the complete HVQMNR calculation, which indicates 

that gg fusion constitutes 80% (897) f h o o c arm production in 7r-N (pN) collisions at 

E769’s center-of-mass frame energy.2’ The balance of the cross-section is attributable 

to qq annihilation, qg processes providing at NLO only an insignificant correction. 

The shapes predicted for charm quark differential distributions are not affected greatly 

by the inclusion of NLO terms in the perturbative calculation 1321. In an absolute 

sense, however, the NLO contribution is very important, approximately doubling the 

cz cross-section prediction. 

In Sections 2.6.1 and 2.6.2, we present NLO QCD predictions for absolute cz and 

differential c quark production cross-sections, respectively; these predictions are given 

for 7r-N and pN interactions. In addition, the uncertainties in these results will be 

discussed and estimated, based on MNR and FMNR results. Direct comparisons of 

these predictions with E769 and previous measurements will be made in Sections 8.3.1 

and 9.3.1. 

2.6.1 Absolute cross-sections 

The predicted cz cross-sections for 250 GeV n- and p collisions on a nucleonic target 

are similar: 5.2 and 4.5 pb/ nucleon, respectively. 26 For pN production, we could 

251n the remainder of this chapter, statements concerning NLO QCD predictions for charm pro- 
duction should be understood as applying at E769’s energy, i.e., fi = 21.7 GeV. 

“The dominant gg fusion component of the cross-section depends rather simply on the distribution 
of gluons in the beam particle: 

Qgg 0: < xg >thr - zthr < !? >thr, 

where < g >thr and < xg >thr are the first two moments of the gluon distribution above an effective 
charm threshold xthr w 0.04. The cross-section essentially increases linearly with the fraction of 
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compare this number directly to the measured total charm plus anticharm particle 
cross-section in the forward hemisphere, if this latter result were available.27 In the 

case of n--induced production, however, the relative hardness of the gluons in the 

pion leads to asymmetric production in the hadronic center-of-mass frame, resulting 

in more charm particles with XF > 0. MNR have determined the ratio F to 

be about 5/8 over a wide range in Eg, where cr,E(x~ > 0) is defined as the CE pair 

production cross-section with a cut of XF > 0 placed on the charm quark. In this 

case, therefore, we must multiply the QCD prediction by a factor 5 x 2 = 1.25 before 

an analogous comparison can be made.28 

As detailed in the previous sections, potentially significant theoretical uncertain- 
ties in n,a are associated with each of the important input parameters of the calcu- 

lation: m,, PRY jLF, AQ~D (through which we obtain the uncertainty in LYS), and the 

PDFs. We report here on those which are likely to be most significant. 

MNR find that decreasing m, by 100 MeV leads to a 50% increase in the prediction 

for a,?. If we assume an uncertainty of ~I~300 MeV in m, about the central value of 

1.5 GeV, we find that the resulting error band in the prediction spans a full order 

of magnitude ! Decreasing PR also leads to an increased cross-section prediction; 

multiplying (dividing) the default value of PR (in this case, m,) by a factor of two 

decreases (increases) (T~Z to about 40% (200%) of its central value. Due to difficulties 

associated with varying PF below scales for which PDF parametrizations are available, 

MNR do not attempt to quantify the analogous uncertainty associated with this scale; 

they do note, however, that it could be as large as that for PR. Clearly, the errors 

already cited show that the precision of current theoretical predictions for u,z (even 

assuming the validity of factorized perturbative QCD formulae at NLO) lag far behind 

that achieved experimentally ( on the order of lo-20%, in some cases). 

momentum carried by the gluons above this threshold, adjusted by a small negative correction 
which increases with the number of gluons among which this momentum must be divided. 

271n practice, we obtain cross-section measurements only for a portion (albeit the expected bulk) 
of the charm hadrons; in Section 8.3.1, the issues surrounding this comparison of data and theory 
are discussed. 

28This factor would be slightly more complicated if the signs of x~ for the produced c and E quarks 
exhibited dependence on one another; MNR find that they are approximately uncorrelated. 
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2.6.2 Differential cross-sections 

In this section, we present NLO QCD differential cross-section predictions for charm 

quarks. The HVQMNR program is used to obtain shape predictions and to study their 

sensitivity to variations of theoretical parameters over ranges deemed reasonable by 

MNR. No attempt is made to model or calculate the various non-perturbative effects 

described in Section 2.5; as stated previously, however, their impact on charm particle 
distributions is potentially significant. With this said, we drop the notational distinc- 

tion between charm quark kT and charm particle pT; the symbol “pT” is hereafter 

used to represent transverse momentum in both cases. 

The predicted da/dxF and du/dp$ shapes, for both x-N and pN interactions, are 

plotted in Figs. 2.5 and 2.6. Empirical fits to these distributions, described below, 

are also shown. 

The du/dxF shapes are well-fit by the following function in the experimentally- 

accessible range -0.1 < XF < 0.8: 

daldxF = 
N’ exp -i(zF;zc)2, 1xF - xc1 < xb 

iv (1 - 1xF - %I)? IxF - 2~1 > xb. 
(2.7) 

At the boundaries between the central and tail regions (xc, -f zb), the function and its 

derivative are forced to be continuous through the following constraints: 

N’ 
In- =n( xb 

N 2(1 - xb) 
+ ln(l - xb)). (2.9) 

Thus the shape of du/dxF can be described over this range with three free parame- 

ters: xc, xb, and n. As detailed in Section 9.3.1, our measured XF distribution shapes, 

given the precision with which they are determined, require only a l-parameter func- 

tion (Equation 9.9) be used for fitting. In comparing theory and data, therefore, we 

will follow the procedure of fitting data distributions to theoretical shapes directly 

rather than comparing parameters. For the sake of completeness, the theoretical fit 

parameters are given in Table 2.1. As expected from the relative average hardness of 
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Figure 2.5: QCD NLO c quark du/dxF vs. 2~. The distributions are integrated over 
the full pT range. Normalization is arbitrary. 

the gluons in pions with respect to those in protons, 2g the predicted du/dxF distri- 

bution in x-N production falls less rapidly with XF (i.e., has a lower n value) and is 

centered in the forward hemisphere (i.e., x, > 0). 

The theoretical predictions for du/dp$ are well-parametrized over the entire p$- 
range by the following function, introduced by FMNR: 

da/dp$ = N (a rnz + p$)-‘, (2.10) 

where m, is the mass of the charm quark. Results of these fits (with m, set to 1.5 

*‘On average, gluons carry a larger fraction of momentum in the proton (47%) than in the pion 
(-38%). But since the average number of gluons in the proton (19) is more than twice that in the 
pion (9), the average momentum per glzon is significantly higher in the pion. 
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Figure 2.6: QCD NLO c quark da/d& (GeV-*) vs. p$ (GeV*). The distributions 
are integrated over the forward hemisphere (2~ > 0). Normalization is arbitrary. 

GeV) are given in Table 2.2. Although the predicted fall-off in p$ is more rapid in 

p-induced production, the beam-particle dependence here is less pronounced than 

in the z,C distributions (and therefore more easily compromised by non-perturbative 

effects). 

In Figs. 2.7 and 2.8, changes in the predicted x-induced distributions due to vari- 

ation of some of the theoretical input parameters are shown; p-induced distributions 

are also given as a reference by which to judge these theoretical uncertainties. The 

different r- PDFs referred to in the caption of Fig. 2.8 correspond to varying the 

fraction of pion momentum carried by gluons by f5% from the default amount used 

in SMRS2. 

In general, the sensitivity of the shapes to these variations is small compared to 
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Beam x, xb n 

x- 0.028 0.040 4.19 
P 0.000 0.145 7.39 

Table 2.1: da/dxF theory shape parameters. 

r I 

/ Beam / a / P 1 

Table 2.2: dn/dp$ theory shape parameters. 

the difference in the shapes expected in nN and pN production. The only exception 

is the effect of variation of m, (by f 300 MeV) on the da/dp$ distributions; the 

r and p beam predictions tend to change similarly with these variations, however, 

leaving the difference in their shape parameters fairly stable. On the right-hand side 

of Fig. 2.8, the effects of m, variations on x and p-induced p$ distribution shapes are 

shown simultaneously. 
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Figure 2.7: QCD NLO q c uark du/dxF vs. ZF, default (solid, upper = x, lower = 
p), variation of j.LR by factor of 2 (dashed), variation of m, by 300 MeV (dotted). 
Normalization is arbitrary. 
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Figure 2.8: QCD NLO c quark da/dp$ (GeVm2) vs. p$ (GeV*); default (solid, upper 
= rr, lower = p); Left: variation of PR (dashed) and PF (dash-dotted) by factor of 2, 
different T- PDF sets (dotted); Right: m, = 1.2 GeV (dash-dotted), m, = 1.8 GeV 
(dashed). Normalization is arbitrary. 


