
Chapter 7 

Acceptance 

7.1 Definition and calculation 

Acceptance is a ratio of decays detected to decays present; it is an efficiency or prob- 

ability for a physical state to satisfy requirements (some of them purely stochastic) 

that allow for a positive measurement to be made. In the context of this analysis, this 

physical event is a charm meson decay D + zyz (ZF > 0), where the two to three 

charged decay products are comprised of pions and at least one kaon. A “positive 

measurement” of such an event has many components. 

First, the event must have been written to tape. This requirement entails two 

efficiencies, elive and etrig, the first being the detector livetime and the second being 

the efficiency for the event to pass a particular set of trigger requirements (labelled 

2’). As detailed in Section 8.1, ciive is included in the “live flux” component of the 

absolute cross-section calculation and therefore does not concern us here.’ 

Once an event is written to tape, detection depends on a multitude of interrelated 

factors: track reconstruction in the SMD and drift chambers; track matching be- 

tween different regions of the spectrometer, allowing for momentum determination; 

Cerenkov identification of the kaon(s); and association of the tracks into primary 

and secondary vertices. Unlike the inherently binary selection criteria mentioned in 

1 Another factor which does not come into our definition of acceptance is beam-tagging efficiency. 
As shown in the calculation of Section 8.1, this e%ciency either cancels out or is included in the flux 
calculation. 
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the previous paragraph, success in any of these processes is typically quantified in 

terms of one or more continuous variables .2 For example, a track returned by the 

track-reconstruction algorithm (which takes as its inputs SMD and DC hits) will be 

associated with a value of the statistical measure x 2. Whether or not this track is 

deemed trgood” (Le., determines with sufficient precision the direction and location of 

a physical particle trajectory) will depend on whether its x2 falls above or below some 

cutoff. This and similar cutoffs (the so-called “analysis cuts”) are chosen to optimize 

particle detection, not by maximixing the overall efficiency but by maximizing the 

expected statistical significance of the measured physical parameters. This process is 

described in Section 5.5. 

The average efficiency for a decay D + zyz to pass all analysis cuts will be called 

sgeom, where the subscript gives the somewhat misleading impression that this effi- 

ciency is simply a function of the interrelated geometries of the particle decay and 

spectrometer. In fact, egeom is a complex convolution of these geometrical dependen- 

cies with the efficiencies of each component of the detector, the details of the tracking 

and vertexing algorithms, and the values of the final analysis cuts. An analytic cal- 

culation of egeom would be exceedingly difficult to perform, so we rely upon numerical 

methods, namely the Monte Carlo simulation of the experiment detailed in Chapter 4. 

Acceptance is given by the following expression: 

where 

fi~~3c(T, D ---f zyz) = number of weighted MC D’s (ZF > 0) observed through 

invariant mass reconstruction of decay D + zyz, and 

Ay~$(D -+ zyz) = number of generated MC D’s (2~ > 0) decaying to zyz. 

By weighting Monte Carlo events, we’re able to include efficiencies or corrections to 

the simulation without changing the code. The above definition of acceptance is also 

2Ultimately these continuous variables are derived statistically from sets of binary physical events, 
such as whethdr an SMD strip registered a hit or whether a phototube fired. 
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valid for the differential analysis, except that both fi,$’ and NgyE are binned in 

XF or pg in order to determine acceptance as a function of these variables. In both 

differential and absolute cross-section analyses, the trigger efficiency is added through 

a weighting function. In the differential analysis, a Cerenkov efficiency correction is 

implemented. In the absolute analysis, corrections to the differential and lifetime 

distributions and drift chamber efficiencies are used. These weighting functions and 

factors are described in the following section. 

7.2 Monte Carlo weighting 

7.2.1 Trigger efficiency 

As detailed in Section 6.2, different trigger combinations make up the data signals for 

each of E769’s five beam particle types. The efficiency of each of these triggers has 

a transverse energy (ET) dependence which must be modelled in the MC in order to 

obtain the trigger efficiency etrig for events containing a particular charm decay. This 

ET dependence changes with run number, as both the trigger thresholds and trigger 

prescalers (which affect the relative fractions of each trigger in a given signal) were 

adjusted from time to time as the experiment progressed. 

The ET dependence of the efficiency of a particular combination of triggers over 

a certain run region is determined by measuring it directly using a set of about 1.2 

million interaction triggers. The interaction trigger, once the effect of its (changing) 

prescaler has been removed, is taken to have an efficiency of 100% for charm. Rather 

than looking at calorimeter output directly (which would have to be modelled well 

in the MC), a measure of ET called p~(7,15) is used. For a given event, p~(7,15) is 

the summed transverse momenta of all JCATSG~ 7 and 15 charged tracks which pass 

a few loose cuts on track quality. 

It has been determined that the p~(7,15) d e en ence of all E769 trigger efficiencies p d 

is well-parametrized by the following function: 

3The variable JCATSG is defined in the footnote on pg. 36. 



78 

%ig(PT(7,15)) = Pl - 
p2 

1 + exp( PT(7’E)-P3) 
(7.2) 

PI-P4 are parameters determined by a fit of efficiency versus p~(7,15). For the trig- 

ger combinations/run regions used in this analysis, these parameters are listed in 
Table 7.1. The parameter PI is the value to which the trigger efficiency function 

plateaus at high p~(7,15); we expect this to be 100% in the absence of prescaling.4 

For charm events, if the efficiency due to prescaling is removed, the remaining effi- 

ciencies due to the low and high-ET thresholds are approximately 75% (90%) and 

10% (20%), respectively, during the negative (positive) running. 

In Fig. 7.1, a fit to interaction trigger data is shown; the shape of the et+ de- 

pendence on p~( 7,15) seen here is typical. Since this dependence is non-linear, these 

parametrization functions are used to weight the MC on an event-by-event basis 

rather than to obtain trigger efficiencies from average values of p~(7,15). 
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Figure 7.1: Trigger efficiency EETin,Region2 vs. pr( 7,15) (GeV). 

Note that to model the average trigger efficiency in p beam data, a flux-weighted 

?C’rigger efficiency function parameters are determined from fits over the p~(7,15) range O-8 GeV. 
The high-ET threshold was set above this range; therefore, for trigger combinations which include 
this requirement in their logic, Et,ig does not turn over and reach a plateau value in a pr(7,15) range 
with a significant amount of data. In these cases, Pr should not be taken as a reliable estimate of 
the average inverse prescale setting. 
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Trigger(s) Run S” p2 p3 

region (GW (G:V) 

ETn+ETB 1 319 f .017 .50 zk .04 2.28 f .07 1.08 f -10 
2 .324 f .013 .37 Ik .02 2.90 f .08 1.83 f .12 

ETinb 1 .954 f .007 .88 f .03 1.92 zt .05 .95 f .04 
2 .973 f .002 .976 3~ .012 1.98 f .02 .965 f .014 

ETn+ETB+ETe 3 .160 3.1 .014 .163 31 .016 4.3 f .2 1.52 f .13 
ETin 3 .9996 f .OOlO .770 + .Oll 1.73 & .03 .824 4 .Oll 
ETin 4 .999 f .005 .78 + .05 1.71 It .lO .83 f .05 

“In the differential cross-section analysis, weighting functions are multiplied by factors which lift 
their plateau values Pi up to 100% (if they’re not there already). The normalization is corrected at 
the end of the analysis using results from the absolute cross-section analysis. 

*The efficiency of the ETin requirement (defined in Section 3.5) is used to model the efficiency 
of ETK triggers, thereby eliminating the contribution of the DISC efficiency to the latter. This 
efficiency cancels out in the cross-section calculation, as described in Section 8.1. 

Table 7.1: Trigger efficiency weighting function parameters. 

sum of trigger efficiency functions, corresponding to the two independent trigger sets 

in this sample (ETn+ETB+ETe in Region 3 and ETK in Region 4), is used. In the 

differential cross-section analysis, 210 and 250 GeV data is combined in the T- and 

K- samples; combined Region 1 and 2 trigger efficiency functions are therefore used 

to weight the MC. 

7.2.2 cerenkov efficiency 

This analysis relies on identification of charged secondary kaons by the two threshold 

Cerenkov detectors in the E769 spectrometer. The efficiency for this identification 

EC(~) is dependent upon the kaon momentum PK. There is reason to doubt (on first 

principles), however, that the MC simulation of the Cerenkov counters is sophisticated 

enough to return a value for this efficiency accurate to within the precision afforded by 

MC statistics. A previous E769 graduate student therefore measured the dependence 

of EC(~) on PK directly using D+ --+ Kmr data. In bins of pK, D+ signals were 
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obtained with and without a cut on the Cerenkov probability of the kaon. The ratio 

of these signals gives an average value of EC(~) over a given range of PK. The ratios 
of these data-determined efficiencies to their MC-determined counterparts provide a 

weighting function with which to correct the MC. A comparison of data and MC 

values of 6~~~) is shown in Fig. 7.2. 

3.2 - 
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Figure 7.2: Cerenkov efficiency for K identification vs. PK (GeV) from II+ + Kmr 
data (solid) and MC (dashed). 

As can be seen from the plot, on the basis of this data alone (which is statistics- 

limited), there is no compelling evidence that any correction is indicated. It was 

decided, therefore, that no Cerenkov correction to the MC would be made in the ab- 

solute cross-section analysis.’ Due to the lingering uncertainty in EC(K), however, the 

precision of the aforementioned determination from data (which is the best informa- 

tion we have) is used as the measure of this contribution to the systematic uncertainty 

in the acceptance (see Section 8.2). 

‘At the time of this decision, the differential cross-section analysis had already been completed 
using the Cerenkov correction to weight the MC (once for each kaon among the decay products of a 
given mode) on an event-by-event basis. The effect of this weighting on the differential acceptances, 
however, is not significant. 
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7.2.3 Differential distributions 

The acceptance for a particle D is a function of its momentum; due to the effective 

azimuthal symmetry of the spectrometer about the beam axis, it is reasonable to split 

this dependence into uncorrelated ZF and p$ parts. We rely upon the MC simula- 

tion of the D event in determining acceptance, both in the absolute and differential 

cross-section analyses. In the latter, however, data and MC signals are binned in XF 

and p$ with sufficient fineness (given the observed variation of acceptance with the 

production variables) to ensure that results are insensitive to the XF and p$ distribu- 

tions generated for the D in the MC. This allows us to obtain differential cross-section 

results without making any assumptions about the distributions we expect (except 

perhaps that the real and MC-generated production distributions are qualitatively 

similar). These results in turn are used in the absolute cross-section analysis; MC 

events are weighted in both zF and pg in order to force the MC distributions in these 

variables to conform to measured results. 

0 0.2 0.4 C.6 0.8 

Figure 7.3: Number of generated D+ events vs. zF (left) and p$ (GeV’) (right). 

As described in detail in Section 9.3.3, for a given beam, combined D differential 

cross-sections are found to be consistent6 with each of the distributions for D+, Do, 

and D, taken separately. In addition, positive and negative-beam components of 

‘See Section 9.3.2 for a precise definition of “consistency” as it relates to two measured 
distributions. 
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Figure 7.4: IIs production distribution correction vs. ZF, for 7r (solid), K (dashed), 
and p (dotted) beams. 
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Figure 7.5: Ds production distribution correction vs. p$ (GeV2), for 7r (solid), K 
(dashed), and p (dotted) beams. 

combined 7r and K beam distributions are found to be consistent with one another. 

Therefore, in order to minimize systematic errors due to uncertainty in the measured 

XF and p$ distributions (see Section 8.2 for the sizes of these errors), combined D 

cross-sections (for combined x, combined K, or p beams) are used to weight all 

pseudoscalar D MC events. II*+ measured distributions for combined 7r and p beams 

are used to weight this species’ MC.7 

7For D'+, the combined K beam measurements are not measured with enough precision to justify 
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MC events are weighted by the following functions: 

F prod.dist.(~F& = 
Nneas(XF) Mnea~(P;) 
&m(XF) qlen(P~) ’ U-3) 

where the subscript “mew” denotes a function proportional to the relevant differential 
cross-section and “gen” denotes a functional fit to the number of MC-generated events 

as a function of the relevant production variable. So that no weighting of generated 

events is necessary, the numerator functions are normalized so that their areas (XF > 

0) are equal to the areas of the denominator functions (i.e., equal to the total number 

of MC events generated in the forward hemisphere). 

Typical MC-generated distributions are shown in Fig. 7.3. For all species, the gen- 

erated distributions in zF were fit by the form given in Equation 2.7, in pc by that 

given in Equation 2.10. Data distributions in XF are fit using the same composite 

function used for the MC. Versus pT, 2 however, combined K and p beam distribu- 

tions are fit to a simple exponential (see Equation 9.11), while the combined 7r beam 

distribution is fit with the two-component FMNR form used for the MC. 

As described in Section 4.1, the MC event generator uses x-nucleon collisions as the 

starting point for every simulated event. We therefore expect the weighting correction 

described in this section to be largest for p beam, especially versus zF. In Figs. 7.4 

and 7.5, the weighting correction functions used for D+ MC are shown. In regions 

where significant fractions of the events reside, the weighting is fairly slight. In order 

to judge the effect of the weighting on the acceptance, however, we must also convolve 

these weightings with the variation of the differential acceptances in the important XF 

and p$ ranges (see Section 7.4). Not surprisingly, the impact on acceptance of these 

corrections to the MC production distributions is small; for example, the largest of 

the D+ acceptance relative shifts (p beam) is only about 4%. 

using them to weight the MC; all meson beam-induced distributions are taken to be consistent with 
the ?r beam result. 
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7.2.4 Lifetime distributions 

The proper lifetime t of a charm particle is strongly correlated to the significance of 

z-separation between primary and secondary (i.e., production and decay) vertices. 

Since a cut on SD2 is an essential component of event selection for each charm decay 

mode in this analysis, we expect the acceptance to depend significantly on the lifetime 

distributions of the various charm species. Therefore, it is crucial that the average 

lifetimes assumed by the MC generator agree with the best measurements available. 

As can be seen from Table 7.2, this agreement is quite good for the pseudoscalar 

mesons in question. 

Particle lifetime r (ps) 
Lund 1994 PDG 

D+ 1.069 1.057 f 0.015 
DO 0.428 0.415 f 0.004 
D, 0.436 0.467 f 0.017 

Table 7.2: MC and world average lifetime values. 

In the absolute cross-section analysis, MC events are weighted as a function of 

their proper lifetime in order to correct for the small discrepancies between the 94 

PDG and Lund truth table lifetimes. The weighting function takes the following 

form: 

TLund exp -t/TPDG fkiis$) = - 
TPDG exp -+Lund’ 

(7.4) 

where the normalization factor gives the two exponential distributions the same area, 

making weighting of generated events unnecessary, as with the production distribu- 

tion correction. The relative shifts in the acceptances due to this lifetime distribution 

weighting are on the order of (but less than) the relative shifts in the lifetimes them- 

selves; this correction brings about relative shifts in the acceptances from w 1% for 

D+ to - 3% for D,. 
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7.2.5 Drift chamber efficiency 

As described in Section 4.2, the average efficiencies of two drift chamber planes (D12, u 
and v views) were not adequately matched by the input efficiencies used in the positive 

digitizer. A corrected version of the digitizer, using modified average efficiencies for 

these two drift chambers, was implemented for D+ and Do modes; D, MC events, 

however, were digitized using the old default plane efficiencies. 

Run region / beam 1 XDC / 

Table 7.3: Positive running DC correction factors. 

The new D12u, and D12v input efficiencies were chosen to match output efficien- 

cies (as returned by the reconstruction code) equaling flux-weighted averages of the 

measured efficiencies of these two planes (obtained as a function of run number from a 

sample of PASS0 tapes). These planes were inoperative for significant portions of the 

positive running (see Section 4.2 for a detailed history). Due to the large fluctuations 

in these efficiencies, acceptances obtained using positive-digitized MC do not reflect 

the average efficiencies of the two DC planes in question for run regions corresponding 

to data subsets (i.e., Regions 3 and 4). Therefore, correction factors were calculated 

for Regions 3 and 4 using the appropriate flux-weighted averages of acceptances ob- 

tained with D+ MC events digitized to model separately the three important regions 

characterizing D12u and D12v performance (the so-called “on/on”, “off/off”, and 

“on/off” regions). These multiplication factors XDC are calculated as follows: 

XDc (Region x) = 
C; fi” Act; 

ACcdej 
9 V-5) 

where the summation runs over the three DC performance regions, the weighting 
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factors f;” give region i’s flux fraction in Region x, Act; is the D+ acceptance in 

region i, and /kc&f is the D+ acceptance averaged over the positive running. 

Since differential distribution and trigger efficiency weightings are dependent upon 

the data subset being simulated, XDC is calculated separately for each beam particle 

appropriate to a. particular run region; these values are given in Table 7.3. The 

systematic errors associated with these correction factors are discussed in Section 8.2. 

7.2.6 Data subset combination 

In the differential analysis, acceptance distributions versus XF and p$ are needed for 

combinations of two or more data samples (e.g., two particles or two beams) when 

the signal estimates for these joint samples are obtained by a fit to a single histogram. 

In these cases, the corresponding MC signals are combined into a joint histogram as 

well. As with the data (see Section 6.3), an explicit mass shift is introduced so that 

different particles can be fit under a single Gaussian. The MC is weighted, however, 

so that the relative amounts of each constituent event type within the MC signal will 

mirror the data. Depending on the data sets that are being combined, this weighting 

can be a function of relative cross-section, branching fraction (B)‘, prescaler value, 

flux, or number of MC events generated. In combining D+, Do, and D, mesons into 

combined D signals, the ratios of the cross-sections are assumed to be 2:4:1. Below 

are given calculations of the various weighting factors W(X), where x indicates the 

type of MC events actually weighted in a particular combination scenario: 

Combining beam particles: 

ur(r’beam) = (g)d&, 

1.0481 x 10” .18081 = ( 7.0086 x 10” 1 jfut x (30794)presc.let = O-879 (7.6) 

w(K-beam) = (g)d& 

( 
2.2570 x 10’ = 5*5848 x logh”” = o-404 (7.7) 

8We label branching fractions of charm species and their unstable decay products Bprimary and B secondary, respectively. 
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Combining decay modes: 

( 
D,--+K'K 
Ds ---f 4~ 

> data = ( $$!)Bprirn~r~ x ($j$BsecondOry = 1.281 
. 0 

( 
D,-+K*K 
Ds + 4~ 

) MC = (~)E3mmadary X (~)#generoted = 1.796 
. 0 

w(D,+K*K) = ( 
D,--+K"K 

) ( 
Ds ---f 4~ 

Ds ---f (6~ 
data x D,-+K*K ) MC 

1.281 
- = 0.713 

= 1.796 

Combining particles: 

D"+Kr 
400 -+ Kn) = (D+ --$ Kjrx)dat. 

4.01% 
cross-section x ( 9.1% -)B = 0.881 

( 
Ds -+ 4~ 
Df+Km 1 

3.5% x 49.1% 
data cross-section 4 9.1% 

)B = 0.094 

( DTs;;;rr)“c = (~)Bsecondary = oe4g1 

Ds 44~ D+ -+Kmr 
+Js + b> = ( D+ --$ KTT)dQta ' ( D, j + lMC 

0.094 
- = 0.191 

= 0.491 

(7.8) 

(7.9) 

(7.10) 

7.3 MC signals 

MC signals are fit (also using log-likelihood) with the same function used to fit the 

data, except that only flat backgrounds are used. Mass and width are allowed to float. 

Incidentally, the quality of these fits (as indicated by x2 /dof and confidence levelg) 

is quite low for high-statistics signals. The returned signal estimates, nevertheless, 

are accurate (deviations on the order of lcr) estimators of the number of MC signal 

events. 

As in the data signal fits, the fitting procedure is modified for signals binned in 

2~ and &), as described in Sections 7.3.1 and 7.3.2. The widths and masses returned 

‘When the term “confidence level” is used with regard to fit quality, it refers to the x2 upper-tail 
probability. 
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by fits of the total negative (see later comments) MC signals are listed in Table 7.4. 

Decay mode width (MeV) 

D+ 3 Kmr 9.38 f 0.10 
DO -+ KK 10.41 f 0.12 
D* 3 DOT 11.1 f 0.2 
D, + KKn 8.18 f 0.13 
Combined D 9.74 zt 0.07 

mass (MeV) 

1870.5 f 0.1 
1866.4 f 0.1 
2012.1 f 0.2 
1970.6 f 0.1 
1870.7 f 0.1 

Table 7.4: MC signal widths and masses. 

For D+ ---t Kmr, the negative and positive MC signals are found to have the 

same width and mass within statistics; for Do + Kx, the differences in width and 

mass are marginally significant but less than 1 MeV. Therefore, for purposes of this 

analysis, negative and positive MC are assumed to have the same width and mass. 

(This becomes relevant soon.) A sampling of fitted MC signals are shown in Fig. 7.6. 

7.3.1 MC signals vs. XF 

Signal width is known to be a function of ZF; this dependence is obtained from the 

MC by fitting signals in 0.1 bins of 2~. In order to minimize the effects of low 

statistics, the mass of the MC signals is fixed to the mass obtained from the fit of the 

total MC signal (typically about 1 MeV higher than the 94 PDG mass value). The 

significance of the xF-binned MC signals begins to peter out rapidly after the 0.5-0.6 

bin; as a result, the widths obtained in the higher-zF fits fluctuate wildly, both high 

and low. Therefore, the widths obtained in the XF range -0.1-O-6 are fitted with a 

third-order polynomial in order to obtain a smooth function of signal width versus 

zF. Widths beyond zF of 0.6 are determined by projecting this function linearly, 

using the width and slope at XF of 0.5. These functions are displayed along with MC 

signal widths versus XF in Fig. 7.7. Due to limited statistics, the MC signal widths for 

the modes D” --f DOT and D, + KKr are fixed using the width functions obtained 
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Figure 7.6: Negative-digitized unweighted MC events vs. invariant mass (GeV), 
XF > 0, for (a) D+ --t Kmr, (b) Do + KT, (c) D, ---) &r, and (d) D" -+ D'x. 

from Do + Kn and D+ --f Kmr MC respectively (offset by amounts indicated by 

the total MC signals). 

The legitimacy of fixing the MC signal mass to a constant value in all bins of XF 

was examined by refitting the D+ + Km MC signals, allowing the mass to float 

while keeping the widths fixed. Although some systematic dependence of the signal 

mass on zF is apparent (see Fig. 7.8), d eviations from constant mass are on the order 

of a few MeV in the zF range of most interest. Fixing the mass at values 2 MeV 

greater and lower than that used in the analysis has no significant impact on the 

signal estimates returned by the fitter. 

In order to determine the signals that go into the calculation of acceptance versus 

zF, the MC signals are refit, this time fixing the mass as ulell as the widths (using the 

smooth signal width function). It should be noted that it is the negative MC that is 
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Figure 7.7: MC signal width (MeV) vs. ZF for (a) Ds + Kmr, (b) Do + Kn, and 
(c) combined D. 

used to obtain the signal widths. For Ds + Kmr, the negative and positive MC are 

found to give signal width functions with consistent parameters. For Do --f Kn, the 

correspondence is not as close. Nevertheless, for this mode the positive MC signal 

estimates obtained using the negative MC signal width function are completely con- 
sistent with those obtained using the positive MC signal width function. Therefore, 

for the sake of simplicity, the negative MC width functions are used across the board. 

Examples of these fits and the resulting signal estimates are shown for the unweighted 

negative-digitized combined D MC signals in Fig. 7.9. 
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Figure 7.8: .D+ + Krr, negative MC, signal mass (GeV) vs. zF. The dotted line 
indicates the constant mass value used in the D+ + Kmr analysis. 

7.3.2 MC signals vs. p$ 

In fitting MC signals broken down into bins of pg (see Section 6.3.2 for a discussion 

of the variable binwidths used in the p$ analysis), it is assumed that the signal width 

does not vary as a function of pi. Both mass and width are fixed to the values 
obtained from the fit of the total MC signal. 

Fits and signal estimates are shown for unweighted negative-digitized combined D 

modes MC signals in Fig. 7.10. Note that the entire p$ analysis is carried out using 

positive XF signals (MC and data) only. Where units are not explicitly shown, p$ is 

measured in GeV2. 

7.4 Results 

In Table 7.5, “geometric” efficiencies egeom are shown for each decay mode. Values 

are shown for x- and K+ beams in order to show the variation of this efficiency with 

running conditions (the most important of which is beam intensity). As described in 

Section 7.2.3, dependence of egeom on beam particle type is relatively weak, so kaon 

and proton beam values are not tabulated. Note, however, that a significant fraction 

of the p-induced signal events were produced in Region 4, during which eseom is about 
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Figure 7.9: Combined D unweighted negative-digitized MC events vs. invariant mass 
(GeV). 
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Figure 7.10: Combined D unweighted negative-digitized MC events vs. invariant 
mass (GeV), XF > 0. 
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17% lower than in Region 3 due to drift chamber conditions (see Section 7.2.5). 

Decay mode egeom( B = 7r-) (%) egseom (B = x+) (%) 

D+ +Kmr 8.35iO.08 5.93 f 0.07 
D'--+Kr 6.85 3~ 0.08 5.36 f 0.07 
D*-+DOr 7.75 It 0.15 5.59 f 0.13 
D, + 4~ 3.47 f 0.08 2.31 f 0.06 

D,+K*K 2.29 f 0.05 1.49 k 0.04 

Table 7.5: “Geometric” efficiencies, (2~ > 0). 

The errors on egeom are determined by taking the relative errors on efficiencies 

derived from weighted and unweighted MC events to be equal; the absolute error on 

the latter is simply the error on the binomial probability E: 

cT = (1 - 4E 
c N”“c ’ 

gen 
(7.11) 

where E in this case is the “raw” efficiency calculated with unweighted MC. In the rest 

of this chapter, errors shown on acceptances will be those derived from MC statistics 

as just described. Additional systematic errors arising from the various weightings 

used (e.g., etrig) are detailed in Section 8.2. 

As defined in the first section of this chapter, “acceptance” is the product of 

efficiencies et+, and egeom, where the former includes the effect of prescaling. Trigger 

efficiencies and forward acceptances for Df 4 Kmr are given in Table 7.6. Because 

etrig is only weakly dependent on the identities of the charm species in the event, 

information from Tables 7.5 and 7.6 is sufficient to obtain estimates of acceptance for 

any data subset/charm meson decay combination relevant to this analysis. The errors 

shown for the tabulated acceptances arise from MC statistics only; systematic errors 

in acceptance (including those associated with etrig) are detailed in Section 8.2.2. 

The shapes of the differential acceptances do not depend strongly on either charm 
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Data subset” etrig(T, D+ + Km+ (%) Acc(D+ + Km) (%) 

Reg. 1 r- 38 3.18 zk 0.03 
Reg. 2 IC 17 1.406 zk 0.013 
Reg. 1 K- 78 6.51 f 0.06 
Reg. 2 K- 78 6.41 zk 0.06 

lr+ 6 0.355 f 0.004 
K+ 89 5.27 310.06 P 9 0.513 310.006 I 

‘In most cases, specification of the beam particle type is sufficient to determine 
the data subset (listed in Section 6.2). It must be kept in mind, however, that 
these data subsets are in general also distinguished by different trigger types and 
run regions. 

bRecall that these trigger efficiencies include the effects of prescalers. 

Table 7.6: D+ -+ Kmr trigger efficiencies and acceptances, (SF > 0). 

species or data subset. To support the former independence, combined 7r beam ac- 

ceptances are shown for each charm meson species versus zF and p$ in Figs. 7.11 and 

7.12, respectively. The latter is supported by Figs. 7.13 and 7.14, in which combined 

D acceptances are shown for different beams versus zF and pg, respectively. The 

absolute scales of these acceptance plots are correct, given that inefficiencies due to 

prescalers are not included.” 

In the combined D acceptance plots, the combined K beam subset has the highest 

acceptance because all of the data is required to pass only the low-& threshold. Next 

comes the combined x beam subset, the acceptance of which is lowered by the effect 

of the relative n-/n+ prescale and the presence of a component coming in under the 

high-& threshold. Finally, the p beam subset has the lowest acceptance, due not 

only to a high-& component but also to a Region 4 component, with its reduced 

drift chamber efficiency. 

loIn the case of combined x and p beam acceptances, where two data subsets with differing average 
prescalers are averaged, the MC is normalized so that the effect of the prescaler on the more populated 
subset is removed; a relative prescale between the two subsets remains. 
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Figure 7.11: r beam acceptance (%) vs. xF for D+ + Kmr (solid), Do ---f 

(dashed), D, + KKn (dotted), and D' + DOT (dot-dashed). 
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Figure 7.12: r beam acceptance (%I) vs. p+ (GeV2) for D+ + Kmr (solid), Do ---f KT 

(dashed), D, + KKn (dotted), and D' -+ DOT (dot-dashed). 

As detailed earlier, weighting is introduced when combining MC signals in order 

to force the relative fractions of each constituent to match those in the corresponding 

combined data signals. This weighting (except for that simulating relative prescaler 

values) must also be used to obtain the correct total number of generated MC events. 

The ratio of these quantities gives the acceptance for combined samples. The error on 

this acceptance, however, cannot be obtained by simply evaluating the binomial error 

on the “raw” acceptance, as that would give each constituent equal statistical power 
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Figure 7.13: Combined D acceptance (%) vs. XF for combined 7r 
combined K beam (dashed), and p beam (dotted). 
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Figure 7.14: Combined D acceptance (%) vs. p$ ( GeV2) for combined 7r beam (solid), 
combined K beam (dashed), and p beam (dotted). 

(assuming an equal number of generated events) despite the fact that some comprise 

only a small fraction of the signal after weighting. Therefore, the relative error of a 

“combined” acceptance is taken to be equal to that of the fraction-weighted sum of 

the constituent acceptances, each of whose relative errors are in turn derived from 

their “raw” acceptances, as described above. The combined D calculation is given as 

an example: 
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Df 

a( ACCD) fl(Cj wgt;Acc;) &(wStj~(Acci))” DO 

AccL, = Ci wgt;Acci = Ci wgti Act; ’ 
i= 

D, + 4~ 
(7.12) 

D, + K*K 


