
Chapter 9 

Differential Cross-sections 

9.1 Definition and calculation 

Perturbative &CD, in addition to providing a prediction of the production cross- 

section of cz pairs in hadronic collisions, can be used to calculate the momentum 

distribution of these charm quarks.’ This distribution is a scalar function of momen- 

tum, where the domain in momentum space is limited by kinematic constraints to a 

sphere of radius p,,,. 2 Integration of the distribution function over this volume Vint 

yields a value equal to the total cross-section: 

d3a 
U= f - dV = s,‘” [-* [z-Z dpL;; dd dpL &a- dd, I,;,,~ d3p (9-l) 

where pi is the longitudinal component of the momentum (parallel to the beam axis), 

pi is the transverse component, and 4 is the azimuthal angle about the beam axis. 

Neither the beam nor the target in E769 is polarized; the absence of any preferred 

direction which can break the azimuthal symmetry about the beam axis allows us 

integrate away the 4 dependence without loss of generality. Further transforming 

‘Here, “charm quarks” is meant to include both quarks and antiquarks. Interestingly, QCD 
predicts a tiny difference in the c and Z momentum distributions [37]. In this analysis, we measure 
the particle-plus-antiparticle differential cross-sections of a given charm meson; therefore we probe 
indirectly the average of the charm quark and antiquark distributions. 

‘As implied by the spherical shape, we are defining momentum in the center-of-mass frame of 
the interaction. Therefore, p,,,,, is given by &.&I/B (21 10.8 GeV for E769). 
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variables, we obtain 

Pmaz J J PTIIQZ d2u 2 P?UI J J 1 

4x dPT = o 
d2c 

U= 
0 -~maz 4x dP, -I dxFdp$ 

dtF dp;. (9.2) 

Use of the Feynman-a: variable facilitates comparison of longitudinal distributions 

obtained at different energies; such comparisons test the zeroth-order scale invariance 

expected from the constituent parton model. Via the change from pT to pc, we obtain 

a transverse momentum distribution with a simple form which does not vanish at zero. 

The hivariate distribution &f:p$ bF9 P”r> cannot be factored into a product of 
zF and p$independent parts. Given the level of precision afforded by our data 
(not to mention the current state of theory), no valuable information is sacrificed 

by treating the two momentum components separately. We therefore confine our 

study to measurements of the differential cross-section distributions in each variable, 

integrated over the other variable: 

(9.4) 

Note that this definition of the transverse distribution will apply in all that follows, 

even when the label “zF > 0” is dropped. The extension of the above discussion 

to differential cross-section distributions for charm mesons is straightforward: the 

momentum of the quark is simply replaced by the momentum of the hadron contain- 

ing the quark. Issues surrounding the expected relationship between the quark and 

hadron distributions are discussed in Chapter 2. 

In practice, we measure the da/dxF and da/dpg distributions by obtaining approxi- 

mate3 samples of them at a number of points. In order to illustrate the procedure, 

we use the longitudinal differential cross-section of D meson production, where B 

represents the beam particle: 

3Given the bin sizes used in this analysis, the errors associated with this approximation are 
negligible. 
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In this equation, x~(;) (A;) is the central value (width“) of the ith 2~ bin, Nprod(zF(j)) 

is the number of D’s produced (12~ - zF(i)I < A;/2) through B-target collisions, and 

F(B) and Tfir appear in the analogous absolute cross-section equation (Equation 8.4). 

By binning all xF(p$)-dependent quantities, the calculation of du/dxF (du/dp$) 

in each bin can be carried out exactly as that outlined in Section 8.1.’ It is easier, 

however, to discard temporarily all quantities which do not depend on XF (p$), calcu- 

late the shape of the differential distribution, and then fix the normalization so that 

following equations holds: 

where the sum i (j) runs over XF (p$) bins for which there is data. 

Dropping the subscript which indicates the binning of the kinematic variables, it 

is now sufficient to write 

See the text immediately following Equation 7.1 or 8.14 for the definitions of these 

quantities. Note that the MC weighting used to obtain k’,’ differs in the absolute 

4The XF bins have a constant width of 0.1, but as explained in Section 6.3.2, the width of a pg 
bin is either 1 or 2 GeV2. 

5This binning p o r cedure rests on the assumption that measurement resolutions for zF and p$ 
are small compared to the relevant bin width. This assumption is supported by MC studies, which 
indicate that typical measurement errors associated with these variables are on order of 10% of the 
bin width used. 
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and differential cross-section analyses; these differences are detailed in Section 7.1. 

An equation analogous to (9.8) holds for dcr/dp$. 

In Section 9.3.1, combined D differential cross-section results (du/dxF and da/dp$) 

for combined 7r, combined K, and p beams are tabulated. In addition, for those 

(combined or individual) charm species/beam combinations for which the differential 

distributions are well-measured, plots showing fits to standard parametrizations are 

provided. 

9.2 Systematic errors 

The conclusion of this section will be that systematic errors on the shapes6 of the dif- 

ferential cross-section distributions are negligible compared to their statistical coun- 

terparts. Despite the caveats placed on the interpretation of the standard shape 
parameters as fundamental physical quantities (see Section 9.3.1), nevertheless they 

remain our most useful handle on variation in the shapes of du/dxF and du/dp$ due 

to any given change in assumptions or analysis procedure. 

Distributions in XF (p$) are generally well-fit by functions with one (one or two) 

shape parameters, namely n (b or cy. and p); the specific forms of these functions, the 

quality of given fits, and the values of parameters returned by these fits are discussed 

in detail in Section 9.3.1. For our present purpose, we need only know the scales 

of the typical statistical errors in these parameters so that we may judge whether 

a given systematic error contributes appreciably when combined in quadrature. For 

our highest-statistics sample (combined z beam, combined O), n is measured to a 

relative precision of 4.4%, b to 4.6%, cy to 21%, and p to 12%. 

Information concerning systematic dependencies of D meson differential distribu- 

tion shapes can be found in the extensive previous studies carried out by members of 

the E769 collaboration. Two E769 papers reporting differential cross-section results 

have been published. The first ([S]) is on r--induced production of Ds and Do, the 

second ([9]) on rr*-induced production of D*+. We will concern ourselves with the 

6Because these distributions are presented with absolute normaiization, the systematic errors 
detailed in Section 8.2 apply. However, in this chapter we concern ourselves only with the shapes of 
the distributions, which are in general much less sensitive to these effects. 
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former (including supporting studies found in the theses of E769 graduate students 

[41, 431); due to th e relatively-low statistics of the D’ signal used in this analysis, 

statistical errors are sure to swamp any systematic effects connected specifically to 

this species. 

In the pseudoscalar D paper, systematic errors in the differential acceptances are 
said to “include the uncertainties in trigger simulation and detector efficiencies” and 

to be “small compared to the statistical errors in the data”; only these latter errors on 

the shape parameters are quoted. These statements are supported by the systematic 

error studies detailed in Section 6.6 of S. Takach’s thesis (from which the results of 

the aforementioned paper are taken) ([41], pp.115-118). He finds the relative errors in 

n and b due to uncertainties in the MC weighting (Cerenkov and trigger efficiency) to 

be on the order of 1%. He also confirms that weighting to correct for the production 

distributions generated by the MC ( a correction used in the present analysis only for 

absolute cross-section calculations) has a negligible impact on the shape parameters. 

In addition to these systematic errors, Takach estimates the error due to the procedure 

used to fit the mass plots. As this error is correlated to the dominant statistical error 

(which was larger for his results), we assess the importance of the former based on 

its ratio of the latter. This ratio is less than 0.5, indicating that any systematic 

component independent of the statistical error will be small. 

One potentially significant systematic error in the differential acceptance which 

is not addressed in Takach’s thesis is that associated with DC efficiencies, specifi- 

cally uncertainty in the measured dimensions of the “DC holes”, areas of diminished 

efficiency near the beam line. In Section 6.3 of his thesis on zF-dependence in 7r-- 

induced D+ production ([43], pp.94-95), 2. Wu provides some relevant information. 

In bins of zF, he shows the average effect on acceptance due to fig variations in the 

widths of the DC holes. At higher values of ZJP, the relative change in the acceptance 

is at most a few percent more than the effect in the 2~ range where most of the 

data resides. Since only differences in the relative changes in acceptance at low and 

high XF can effect the shape of the differential acceptance, this contribution to the 

systematic error must be negligible. In fact, the error is even much lower than the 

above discussion might imply, because the changes in acceptance obtained by varying 
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all DC hole widths together (by fla) is a gross overestimate of the systematic error 

which should properly be associated with the independent uncertainties in the DC 

hole dimensions. 

In the present analysis, combined D differential cross-sections are used to estimate 

systematic relative errors on the shape parameters. As discussed in Section 9.3.1, the 

standard n (b) p arameter exhibits a systematic dependence on the upper (lower) 

limit chosen for the fit range. Rather than serving as evidence of systematic errors in 

well-defined fundamental quantities, this range dependence points to the inadequacy 

of these one-parameter functions as analytic forms for the differential distributions. 

Therefore, no systematic error is associated with n and b due to this effect; rather, 

these quantities are reported as range-dependent. 
Fits to da/dxF and da/d& also show some sensitivity to the choice made in the 

point at which to exclude bins for which the data signal was not well-measured. By 

adding an extra bin (at high zF or p$) to the number indicated by the default cutoff 

in signal significance (described in Section 9.3-l), this systematic error was estimated 

and found in all cases to be a fraction of the statistical error. As these errors are 

correlated, any independent systematic effect is even less significant and therefore 

negligible. 

One final systematic error, applying to the combined D differential cross-section 

results, arises from the relative weights given D+, Do, and D, acceptances in the 

composite average acceptance. These weights are calculated in Section 7.2.6. An 

overestimate of this error was obtained by varying the D+/D’/D, cross-section ratio 

assumed from 2:4:1 to 2:2:1; this changes n by about 30% of the statistical error. 

As shown in Figs. 7.11 and 7.12, differential acceptance shapes are insensitive to the 

identity of the D meson. 
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9.3 Results 

9.3.1 Differential cross-sections 

Combined D differential cross-section results for K, K, and p beams are given in 

Tables 9.11 and 9.2. While these and other results presented in this section are ab- 

solutely normalized using the results of Chapter 8, what shall concern us here are 

the shapes of these differential distributions. Differential cross-section shapes are 

commonly characterized by standard parametrizations which, while having some the- 

oretical motivation, are justified primarily on a phenomenological basis (i.e., they 

give a decent fit to the data and/or theory). By fitting observed da/dxF and da/dpc 

distributions with these functional forms, we are able to quantify their shapes as a 

small number (l-3) of independent7 parameters. 

; 

-0.1 - 0.0 17 f8 < 53 < 54 

0.0 - 0.1 47 f 3 48 zt 7 50 f 7 

0.1 - 0.2 35 f 2 38 *4 31 f4 

0.2 - 0.3 21.9 f 1.4 24 z!z 3 16 f 3 

0.3 - 0.4 11.4 f 1.1 12 xk 2 3.5 f 1.6 

0.4 - 0.5 4.7 31 0.8 5.2 zt 1.8 < 0.7 

0.5 - 0.6 2.3 f 0.6 4.2 zk 1.7 

0.6 - 0.7 1.1 f 0.5 < 1.6 
0.7 - 0.8 < 1.1 

Table 9.1: E769 measurements of differential cross-sections vs. XF for 7r, K, and 
p-induced D meson (D+, D-, Do, no, O,‘, and 0;) production. In addition to the 
statistical errors shown, there are overall normalization errors of about S%, S%, and 
9% for 7r, K, and p results, respectively. Inequalities are given for 90% confidence 
level upper limits. 

7While the shape parameters are independent of one another, in general their errors, derived 
statistically using the fitter’s minimization algorithm, are to some degree correlated. 
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1 p+ range (GeV2) 

O-l 
l-2 

2-3 

3-4 

4-5 

4-6 

5-6 

6-7 

6-8 

7-8 

8 - 10 
10 -12 

12 - 14 

14 - 16 

I da/dp; (pb/(nucleon GeV2)) 

2.25 f 0.16 

7r beam 

0.90 f 0.09 

0.45 f 0.06 

0.28 f 0.04 

0.3 f 0.4 

- 

0.08 f 0.02 

0.07 f 0.02 
- 

0.025 i 0.013 

0.019 f 0.007 

0.006 f 0.005 

0.007 f 0.004 

< 0.005 

2.6 

K beam 

f 0.4 2.6 

p beam 

f 0.4 

1.0 f 0.2 

8.8 

0.69 

f 

f 0.17 

0.56 

0.8 

f 0.14 

6.2 

0.24 

f 

=t 0.10 

0.8 

- 0.16 f 0.07 

0.07 * 0.04 - 

- 0.11 III 0.06 
- - 

0.06 zk 0.03 0.05 xt 0.03 
- - 

< 0.02 < 0.02 

Table 9.2: E769 measurements of differential cross-sections vs. p$ for K, K, and 
p-induced D meson (D+, D-, Do, Do, 0,‘) and 0;) production. Description in 
Table 9.1 caption applies. 

Theoretically-predicted da/dxF distributions, both for charm quarks (NLO QCD) 

and charm mesons (Lund MC), are well-fit in the zF range accessible to E769 (-0.1 < 

XF < 0.8) by the 3-parameter function defined in Equation 2.7. The former fits, 

described in Section 2.6.2, are used later in this section to compare measurements 

with theory; the latter fits determine the differential distribution correction functions 

(see Section 7.2.3) used to weight the MC in the absolute cross-section analysis. 

In fitting measured dcr/dxF distributions in the forward hemisphere, however, the 

following standard l-parameter function (hereafter called the “n-form”) is sufficient: 

da 
& = N (1 - IxFly. (9.9) 

Although the data presented here does give some limited indication of the behavior 



137 

TT beam 

7s K beom 
g 102k 

0 2 fJ-- 

‘1;- to c- 

3 

x” 1 

% 

/.,>,T, 

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 

-0 
p beam 

102 

10 

1 L~lA-~l~lll - 
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 

10 

1 

10-l 

-2 
10 

2 

5 
02 

-z! 

2 10 

“> 

s ’ 

7 -1 

-g’O 
- 

-+ 
c 

5 

-0 10 

1 

-1 
10 

C 4 0 12 16 

-2 
10 I I I., IT-F--z I 11 I 

‘.., . . 

0 4 12 16 

Figure 9.1: Combined D differential cross-sections with parametrization fits. Versus 
XF (PC), n-form (b-form) fits are indicated by a solid line. Fits of da/dp+ using the 
FMNR form are shown as a dashed line. Extrapolations of fits beyond the fit range 
used are indicated by dotted lines. 

of the cross-section in the backward hemisphere, negative-zF cross-sections are not 

measured with enough precision to yield significant information about the “central” 

shape parameters x, and xb (defined in text following Equation 2.7). Use of the form of 

Equation 9.9 assumes, contrary to expectation in the case of r-induced production, 

that da,/dxF is symmetric about zero. Furthermore, this function’s discontinuous 

derivative at zero x,f? gives it an unphysical cusp. Nevertheless, as stated above, 
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the shapes of measured da/dxF distributions in the full forward hemisphere can be 

characterized by the single “tail” parameter n. The usefulness of this parametrization 

is discussed further when results of the fits to data are presented later in this section. 

Versus p$, the 2-parameter FMNR form 

dcr 

a 
= N (am: + P;)-~, 

where m,: is the mass of the charm quark (set to 1.5 GeV), gives good fits to data 

(as well as theory) over the full p; range over which D meson signals are obtained 

(O-16 GeV2). For th e more precisely-measured distributions, this form supplants the 

following two forms, which provide acceptable fits to the data only at low and high 

p$,‘respectively: 

dcr - = N exp -bp$ 
dPS- 
da 

-= 
dP; 

N’ exp-b’& = N’ exp-b/p=. (9.12) 

The first exponential (b-form) is found to give poor-quality fits to the more precisely- 

measured. distributions, even given the limited range in which it is used (O-4 GeV2, 

unless otherwise specified). Unlike the FMNR function, however, the b-form has 

been used by numerous experimental collaborations to parametrize their results. The 

second exponential (b/-form) is found to give good fits to the data in the full range 

above pT of 1 GeV. 

In Figs. 9.1 through 9.6, we present plots of da/dxF and dcr/dp$ for the combined 

D as well as the individual D meson species. Distributions for K, K, and p beams 

are each shown except in cases where the data is too scarce to break up into bins. 

As with the forward cross-sections (see discussion in Section 8.3.2), combined rr and 

K beam results are used in comparisons with previous measurements made using 

negative meson beams. In Section 9.3.2, positive and negative R and K beam results 

are compared. 

In the aforementioned plots, least-squares fits to da/&~ and &r/d& are also 

shown. The former distributions are fit using the n-form; although this form can be 
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IBeam~z~range~ n l~2/dof!C.L.a(%)j 

?I- > 0.1 4.4 + 0.2 0.5 76 

> 0.0 4.03 + 0.18 1.5 19 
K > 0.1 4.2 f 0.5 0.4 72 

> 0.0 3.8 f 0.4 0.7 57 

P > 0.1 7.1 f 1.1 2.3 13 

> 0.0 6.1 f 0.7 2.0 13 

‘confidence level (x2 upper-tail probability), 

Table 9.3: Combined D da/dzF fit results. 

Beam p$ range (GeV2) b (GeVS2) x2/dof C.L. (%) 

ii o-4 o-4 1.05 1.08 zt f 0.05 0.09 6.8 1.7 0.1 18 

>o 1.04 zk 0.08 1.7 15 

P o-4 1.08 f 0.09 0.7 48 

>o 0.99 f 0.08 1.4 22 

Table 9.4: Combined D dc/dpc fit results, b-form. 

used to fit da/dxF for all positive XF, fits over the more limited range XF > 0.1 are 

shown, primarily to follow the precedent set in earlier E769 differential cross-section 

papers 16, 91 .8 The pc distributions are fit using the b-form (solid line) in the p+ 

range O-4 GeV2 and, in cases with data available beyond this range, the FMNR form 

(dashed line) over the full pg range. For both zF and p$ fits, the fitting functions used 

integrate given parametrizations over the width of a bin rather than returning the 

value at the bin center. The fits are done using all bins (in the range appropriate to 

‘In [6], inclusion of the first positive ZF bin led to a poor n-form fit to the combined D data. 
The ZF range in [9] was kept the same to facilitate comparison of D’ results with those presented 
in [6]. 
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7 

Beam QI P x2/dof C.L. (%) 

ii 2.4 1.4 31 f 0.3 1.6 5.0 7.6 i f 3.7 0.6 1.1 1.5 35 22 
P 2.2 f 1.5 6.6 f 3.3 1.2 33 

Table 9.5: Combined D da/dpg fit results, FMNR form. 

Beam pT range (GeV) b’ (GeV-l) x2/dof C.L. (%) 

n- 1.0 - 3.742 2.74 f 0.09 1.4 19 
1.0 - 2.449 2.58 f 0.10 2.1 10 
0.0 - 3.742 2.28 f 0.04 6.5 0 

K 1.0 - 2.828 3.0 f 0.3 1.7 17 
P 1.0 - 2.828 3.0 f 0.3 0.6 64 

Table 9.6: Combined D da/dp$ fit results, b/-form. 

the parametrization) which have at least a 2a signal (or are bounded by two bins that 

do). Upper limits9 are shown for those bins which do not satisfy the above criteria but 

are adjacent to ones that do. The numerical values of the shape parameters returned 

by the fitter and information about the quality of the fits are given in Tables 9.3 

through 9.14. 

In Fig. 9.2, combined D da/dp; fits using the b/-form are plotted. As can be seen 

from the unusual binning used, the independent variable is transformed from pg to 

pT by simply taking the square roots of the bin edges and rebinning the histograms. 

The results of these fits are given in Table 9.6. 

As mentioned in Section 9.2, the n and b parameters exhibit a systematic de- 

pendence on the fit range chosen. As shown by the combined D dcr/dxF fit results 

gFor empty bins, Poisson statistics are used to obtain the 90% C.L. upper limit (2.3 events divided 
by the acceptance); for the rest, this limit is calculated through a Bayesian integration of a Gaussian, 
as described in Section 8.3.1. 
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Figure 9.2: Combined D da/dp$ (pb/GeV2) vs. pT (GeV). Fits using the b/-form 
are shown as a solid line. Extrapolations beyond the fit range used are indicated by 
dotted lines. 

reported in Table 9.3, the inclusion of the 0.0-0.1 zF bin in the fit decreases n it by 

l-20. The use of the standard b-form to fit du/dpg is also problematic; as indicated by 

the good data fits obtained using the FMNR form, the cross-section dies out at high 

transverse momentum much more slowly than is consistent with exponential behavior 

in pc. Therefore, data fits using the b-form are poor for the well-measured distribu- 

tions. Even when the b-form fits the data acceptably, b decreases systematically as 

more of the high-p; tail is included in the fit range. 
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Figure 9.3: D+ differential cross-sections. See Fig. 9.1 caption. 

With these caveats in mind, we can make comparisons to previous measurements of 

differential cross-section shapes by comparing the standard n and b shape parameters. 

The FMNR form has not previously been used to fit data, and only E769 has reported 

b’ values (see below). Previous measurements of combined D1’ (0”) shape parameters 

are given in Tables 9.15 through 9.17 (Table 9.18). Note the different ranges in 2~ and 
& used by the various experiments as well as the changes in beam energy. Theory 

“The combined D sample used by other experiments and in earlier E769 analyses does not include 
D,. 
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/ Beam / R. / x2/dof / C.L. (%) I 

ii 4.3 4.2 zt f 0.7 0.3 1.5 .8 48 22 

P 6.6f2.1 - - 

Table 9.7: D+ da/dxF fit results. 

Table 9.8: D+ da/dpg fit results. 

predicts that as beam energy rises from 200 to 800 GeV, n should rise by about 

45% (30%) f or x(p)-N charm production; over the same range in beam energy, b is 

expected to drop by about 20% (25%) [26]. 

For rr, K, and p beams, the n and b results of the present analysis are largely 

consistent with previous measurements (including those of E769). Although for x- 

induced D production, the published b values tend to be significantly lower than 

those of E769, this can probably be attributed to the much larger p$ ranges used in 

determining the former. In addition, the present analysis has not led to a significant 

change in the b’ value obtained previously by E769 [6] for r-induced D production: 

2.76 zt 0.08 GeV-‘, over a PT range very similar to that used in this analysis. Not 

enough precise measurements are available to assess the accuracy of the energy depen- 

dence of the differential cross-section shapes predicted (for quarks) by perturbative 

&CD. The magnitudes of n and b expected from theory, however, are consistent with 

the trend in the data. At E769’s beam energy, n is predicted to be about 4 (6.5) for 
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Figure 9.4: Do differential cross-sections. See Fig. 9.1 caption. 

r(p)-induced production; b is predicted to be close to 1 GeVe2 in both cases [26]. 

As detailed in Section 2.6, NLO QCD predictions of the shapes of charm quark 

differential cross-sections (versus XF and p$) are generated for both 7r and p beam 

using the program of Mangano et al.; good fits to these distributions are obtained. 

Fits of the combined D measured distributions to theory, with the normalization 

kept floating, are carried out as parametrization-independent tests of the agreement 

between theory and data. The results of these fits are given in Tables 9.19 and 9.20. 

Remarkably, D meson dc/dxp distributions induced by 7r and p beams are well-fit 



145 

/Beam1 n /x2/dofiC.L.(%)i 

ii 4.9 3.8 f f 0.5 1.0 0.03 1.7 97 18 
P 3.2f2.9 - - 

Table 9.9: Do da/dxF fit results. 

p x2/dof C.L. 
(%) 

1.11 f 0.08 3.0 1 5 1.0 l 0.4 4.0 f 0.9 1.2 
I 1 

29 
0.4 1 66 11 1.4 f 2.9 1 4.9 f 7.3 ( 0.3 ( 56 1 
0.4 1 70 I] 0.9 f 1.1 1 3.3 f 2.3 1 0.4 1 79 

Table 9.10: Do du/dpg fit results. 

by the corresponding predictions for charm quarks. These latter shapes are found to 

be insensitive to variation of parameters typically used to gauge theoretical uncer- 

tainty (m,:, PR, pi) [32, 371. Furthermore, the 7r and p beam predictions for da/dxF 

are quite distinct, the former being significantly harder and peaking at 0.03 rather 

than being symmetric about XF of zero. Consequently, the precision of the data is 

more than sufficient for the expected difference in r and p-induced production to be 

measured; the shape of the K (p) b earn distribution is inconsistent with that of the 

p (x) beam theory. The K beam data is well-fit by the 7r beam theory, indicating 

similarity in pion and kaon gluon distributions. 

The predicted separation between 7r and p-induced charm production is not as 

pronounced for du/dp$ as it is for dr/dx F; the 7r beam distribuiion is expected to be 

somewhat harder. These shapes, further, show a dependence on moderate variations 

in m, (Z!Z 0.3 GeV) which is similar for both beams and on the order of the difference 

between them (see Section 2.6). The K and p beam shapes are fit well by either 
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Figure 9.5: D, differential cross-sections. See Fig. 9.1 caption. 

[Beam1 n ix2/dofiC.L.(%)i 

ii 2.5 5.3 zk It 2.2 2.3 0.02 1.9 88 16 

Table 9.11: D, da/dxF fit results. 

theory curve. The x beam data distribution, however, while fit well by the theoretical 

distribution generated using 7r parton distributions for the beam, is inconsistent with 

the p beam theory. 

These da/dxF and da/dpc data-theory comparisons are plotted in Figs. 9.7 and 

9.8, respectively. Normalizations of the A (p) beam theory curves are floated for 

best fit to the K (p) beam data. It should be emphasized that the theory curves 

shown are ,for charm quarks; no attempt has been made to modify these predictions to 



147 

10 

Table 9.12: D, da/dp$ fit results. 
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Figure 9.6: D* differential cross-sections. See Fig. 9.1 caption. 

incorporate non-perturbative effects such as intrinsic parton PT and hadronization. At 

E769’s level of precision, these corrections are evidently unimportant or fortuitously 

cancel out one another. 

9.3.2 Beam particle dependence 

As with the absolute cross-section results, we combine oppositely-signed 7r and K 

beam samples to obtain our most precise measures of the differential distributions 
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Beam n x2/dof C.L. (%) 

; 2.6 3.8 zt f 2.3 0.6 0.01 1.3 92 28 

Table 9.13: D” da/dxF fit results. 

b (GeVm2) x2/dof C.L. cr P x2/dof C.L. 
m @o) 

0.77 f 0.09 0.8 45 7.4 f 9.3 14.0 zk 15.6 0.5 67 

Table 9.14: D” da/dpt fit results. 

for the three E769 beam species (n, K, p). This procedure is supported by the 

argument’s presented in Section 8.3.2. In fact, once issues of absolute normalization 

are ignored, dependence of the distribution shapes on beam particle charge should be 

further diluted because observed distributions are effectively averages of components 

which are not expected to be markedly dissimilar (e.g., gg fusion and @j annihilation). 

Results which support these assumptions are presented in this section. 

By minimizing the x2 between two measured distributions (allowing the normalisa- 

tion of one of the distributions to float), we can obtain quantitative support (x2/dof, 

confidence level) for a statement concerning the (in)consistency of the shapes of the 

distributions. Of course, the range of the comparison is limited to that of the distri- 

bution measured with the lesser precision. 

First, we carry out this procedure on the combined D differential distributions for 

oppositely-charged meson beams. Versus z~, the r-/n+ (K-/K+) shape comparison 

fit returns a x2/dof of 1.7 (0.5), indicating consistency at the 14% (74%) confidence 

level. The evidence for consistency versus pc is slightly more compelling, with a 

X2/dOf. of 1.0 (0.3) corresponding to a confidence level of 45% (79%). For each 
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Expt. EB # xF range 
(GeV) events (b (G:V-2)) (pif range (GeV2)) 

NA32 200 114 2.5 + u-l o:3 0.0 - 0.7 
(1.06 ‘-;:;f) (0 - 5) 

230 792 3.74 f 0.23 f 0.37 0.0 - 0.8 
(0.83 f 0.03 f 0.02) (0 - 10) 

E769 250 1307 3.9 f 0.3 0.1 - 0.7 
(1992) (1.03 f 0.06) (0 - 4) 
‘WA75 350 459 3.5 f 0.5 -0.5 - 0.5 

(0.77 f 0.04) (0 - 10) 
NA27 360 57 3.8 f 0.63 0.0 - 0.9 

(0.83 f 00:;;) (0 - 10) 

E653 600 676 4.25 f 0.24 f 0.23 > 0.0 
(0.76 f 0.03 zt 0.03) 

Table 9.15: Previous measurements of combined D shape parameters, x beam 
[17,19,6,16,2,29]. 

individual D species, these findings are corroborated by the consistency of the n and 

b shape parameters determined for oppositely-charged meson beams. In Fig. 9.9, 

combined D x- and rIT+ distributions are plotted together. 

Next, we turn to the combined D da/dxF and da/dp$ results for x, K, and p 

beams. As expected from the inability of the x (p) beam da/dxF theory curves to 

fit the p (n) b earn data, these two data distributions are found to be inconsistent at 

a greater than 99% confidence level (x2/dof > 4).‘l Versus p$, the distributions for 

zr and p beams are found to be consistent. (Recall, however, that this comparison is 

only conducted over the range of the less-precisely measured distribution, in this case 

that for p beam.) For both da/dxF and dc/dp,, 2 K and 7r beam results are found to 

be consistent. 

‘lThe confidence level for inconsistency is just 100% minus the confidence level for consistency, 
previously defined. 
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Expt. EB # 
(b (Gk)) 

x~ range 
WV) events (p$ range (GeV’)) 

NA32 200 34 4.7 f 0.9 0.0 - 0.6 
(2.7:::;) (0 - 3) 

230 31 3.56t;$ 41 0.36 > 0.0 
(1.36 + $;; zk 0.04) 

Table 9.16: Previous measurements of combined D shape parameters, K beam [17,19]. 

Expt. EB # 
Pw events (b (GZV-?)) (p; r~~g~~~V2)) 

NA32 200 9 + 2.1 
$1; z if) 

> 0.0 

NA27 400 119 4.9 f 6.5 0.0 - 0.6 
(0.99 f 0.09) (0 - 7) 

E653 800 96 6.8 + ;:; > 0.0 
(0.84 +_ $;) 

E743 800 31 8.6 * 2.0 0.0 - 0.5 
(0.8 & 0.2) (0 - 6) 

Table 9.17: Previous measurements of combined D shape parameters, p beam 
[17,4,30,12]. 

9.3.3 Hadronization 

In principle, we expect hadronization to impact the differential distributions through 

such non-perturbative effects as color-dragging and leading-particle enhancement 

The latter is largely eliminated by combining particle and antiparticle signals together 

although differences could persist between neutral-leading production and the average 

of leading and non-leading production. In addition, the fraction of a particular D 

meson species that is directly produced is relevant. 
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Expt. EB # 
WV events (b (GrVm2)) (p$ r~~g~~~V2)) 

NA32 200 46 + 1.1 (if i”::, 0.0 (0 - - 5) 0.7 

230 147 3.14 ?i::,iij 0.0 - 0.8 
(0.79 f 0.07) (0 - 10) 

E769 250 519 3.5 f 0.3 0.1 0.6 - 
(1994) (0.70 f 0.07) (0 - 4) NA27 360 8.5 - (04Z 

F4) 
- 

0.0 (0 - 3) 0.5 

Table 9.18: Previous measurements of D” shape parameters, K beam [17,19,9,3]. 

P 5.0 0.2 
n- P 20.5 0.00 

Table 9.19: Data fits to theory shapes, da/dxF. 

In the differential cross-section analysis, the assumption has been made that, for 

the pseudoscalar mesons D+ , Do, and D,, th e z d ‘8 erences in these effects are too small 

to be seen, given the precision of our shape measurements. (The high-quality fits of 

charm quark theory to the measured distributions supports a stronger assumption, 

namely that the sum total of hadronization as well as other non-perturbative effects 

is itself small.) 
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Data Theory x2/dof C.L. (%) 

ii 7r 1.4 1.7 14 18 

P 0.9 53 

ii P 2.8 1.0 0.2 43 

P 1.2 33 

Table 9.20: Data fits to theory shapes, du/dp$. 

The consistency check described in the previous section is also used to justify the 

combination of the D+ , Do, and D, meson distributions into combined D distribu- 
tions. Using the x beam distributions, we find that the zF (p$) distributions for the 

pseudoscalar mesons are all consistent with one another at a 12% (47%) or greater 

confidence level (x’/dof < 2 (1)). 

The issue of direct versus indirect production (Section 8.3.3) is addressed by com- 

paring combined D and D” results (?r beam) for the differential cross-section shapes. 

Recall that only about 25% of the combined D sample is produced directly. The zF 

distributions are found to be consistent at a 70% confidence level. Versus pg, how- 

ever, the shape comparison fit returns a x2/dof of 2.5, indicating inconsistency at a 

greater than 97% confidence level. It is evident upon comparison of the pseudoscalar 

and vector D values of b that the emission of a pion or photon leading to indirect D 

production significantly softens the transverse momentum spectrum (corresponding 

to a high.er b value) with respect to that of the parent D”. We calculate the magnitude 

of this effect for the pion emission case: 

p;(D-) = (pT(O> + pT(“)) * bT(D> + PT(d) 

= p;(D) + P;(r) + 2 PT(D) - PT@+ (9.13) 

The transverse components of momenta are invariant under boosts along the beam 
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Figure 9.7: Measured D meson (P, D-, Do, no, O,‘, and 0;) dc/dxF for produc- 
tion induced by 7r, K, and p beams and NLO QCD predictions [33] for charm quarks 
(n and p beams). In addition to the statistical errors shown, there are overall nor- 
malization errors of about 6%, 6%, and 9% for 7r, K, and p results, respectively. The 
abscissas of some data points are slightly offset to make them easily visible. Arrows 
indicate 90% confidence level upper limits. 

axis; we choose to work in the frame where PL(D*) = 0. Within the transverse plane, 

we define the z(y)-axis as perpendicular (parallel) to the transverse momentum of 

the D”. We now obtain an expression for the P-D difference in p$: 

A z p;(P) -p;(D) 

= Pie) + 2 Pm .P*bT) 

= Pm + P;(4 + 2 (P=(D) P&4 + PYW PYW (9.14) 

Assuming that the D’ is produced on average with no net polarization, the D and K 

are produced back-to-back in the D” rest frame with an isotropic angular distribution. 

Let 4 and 0 be the azimuthal and polar angles in this (primed) frame, respectively. 

In this frame, p( 0)’ = p(r)’ G pc~,l z 36 MeV, allowing us to express A as follows: 
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Figure 9.8: Measured D meson (II+, II-, Do, Do, O,‘, and 0;) dr/dp$ (ZF > 0) for 
production induced by x, K, and p beams and NLO QCD predictions [33] for charm 
quarks (T and p beams). See explanation in Fig. 9.7 caption. 

A = P:(T)’ t y2 (p&r)’ t P E(n)‘)* t 

2 (PdWPh->’ -t r2 (Pm’ + P W)‘) (Py(T> + Pqg’)) 

= ptA4 cos2 q5 sin2 e + 

7' (pcAf sin2 #J sin2 e - 2 p pc~~ E(n)’ sin 4 sin 0 + p2 E2(n)‘) - 

2 [pin.[ cos2 4 sin* 0 t y2 (p& sin2 4 sin2 e + 

P pcnl (E( 0)’ - E(r)‘) sin 4 sin 6 - p’ E( 0)’ E(7r)‘)], (9.15) 

where 7 and ,0 define the boost (in the transverse plane) from the D” rest frame to 

our work frame. 

Due t'o the low Q value of the D’ decay (5 MeV) with respect to the masses of 

the decay products, we can approximate the energies of the D and 7 in the primed 

frame with the masses of the respective particles. Averaging over the full solid angle, 

we obtain 
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Figure 9.9: Combined D differential distributions compared for T- (solid) and T+ 
(dashed) beams. Left: du/dxF (pb/nucleon) vs. XF, right: da/dp$ (pb/(nucleon 
GeV2)) vs. pg (GeV2). 

Replacing p2 with p~(D’)/(m~. + pc(D’)), we obtain 

mD+m&%- 

(9.16) 

(9.17) 

Plugging in numerical values, we obtain 

A = 0.13 x p+(W) - 0.86MeV2. (9.18) 

Assuming that pg(D”) h as an exponential distribution, only the first term on the 

right-hand side of the equation impacts the relationship between the b values of the 

parent and daughter D mesons; this constant fractional change in p$ leads immedi- 

ately to a prediction that b(D) be higher than b(D*) by about 15%, assuming there 

is no direct D production and all D*‘s decay to a pion and a D. The prediction for 

photon emission is obtained by replacing m, by pc~,f (-70 MeV in this case) in the 
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above equations; the effect is about half as large, leading to only a 7% increase in the 

average bl value of the daughter D over that of the D”. 

Our x beam results provide the best measure of the b parameter ratio: 

b( combined 0) 

w-1 
= 1.40 f 0.18. (9.19) 

Although most D*‘s undergo Dn decays, we expect the effects derived above to be 

diluted somewhat by direct production of pseudoscalar D’s (-25% of total). These 

considerations lead to an expectation that the combined D b value be higher than 

that of the D” by 10-15’3’ 0; our measured results are consistent with this prediction. 


