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Each arm of the NLC Main Linac is almost 11 km in length; including the final focus
region, the total complex extends over 30 km. Were it to be constructed using straight-
line tunneling, its sagitta relative to a gravitational equipotential surface would be about
18 meters. While that seems like a small number, its impact on pumping requirements
is significant. Further, if the tunnel is dug using “cut-and-fill” methods, the increased
cost of moving the extra dirt must also be taken into account.

An alternative being considered is not to tunnel in a straight line but to bend the
Main Linac into an arc so as to follow an equipotential. We begin here an examination
of the effects that this would have on vertical dispersion, with its attendant consequences
on synchrotron radiation and emittance growth. Two scenarios are studied: (a) gently
bending the beam “continuously” to follow an equipotential surface, and (b) introducing
sharper bends at a few sites in the linac so as to reduce the maximum sagitta produced.
In both cases, and throughout this paper, we will adopt a minimalist approach, always
making the smallest possible changes to the already existing NLC design. We are striv-
ing here only for some order of magnitude calculations, not a serious design study.

1 Continual gentle bends

In our first scenario, the Main Linac remains as close as possible to an equipotential
surface. Minimalism suggests that we try bending the beam by vertically translating al-
ready existing NLC quadrupoles, without introducing new elements or additional mag-
netic fields. We thus propose that steering be accomplished by precisely aligning all
the quads “level” along the equipotential and then raising the vertically defocusing (D)
quadrupoles to steer the beam through the centers of the vertically focusing (F) quads.1

Bending at the D quad locations will minimize the generated dispersion.
To estimate the order of magnitude of dispersion produced by such an arrangement,

we calculate (a) assuming a periodic sequence of magnets while (b) neglecting the ef-
fects of acceleration [6] and (c) keeping only leading terms in the bend angle.2 Our

1The usual convention is for “F” (“D”) to indicate a horizontally focusing (defocusing ) quadrupole. We
do the opposite here, because we are considering dynamics only in the vertical plane.

2Literally, this would require that the bend angle be some integer fraction of 2π, a restriction that we will
ignore.
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results will be reasonably correct provided that upstream injection into the Main Linac
is redesigned to match the new arrangement.

Figure 1 shows the physical layout of quadrupoles and identifies the geometric pa-
rameters. All length measurements are referred to a straight line passing through the
center of two successive focussing quads: L is the “half-cell” length, that is, the (pro-
jected) distance between neighboringD and F quadrupoles; d, the vertical displacement
of the D quad; yo, the offset of the beam as it passes through the quad; ysag, the sagitta
of the equipotential at the quad’s location; and finally, θ is the bend angle produced by
the displaced D quad. A few geometric relations will be useful later; in what follows,
R is the radius of the Earth.

L = Rsin(θ/2)
≈ Rθ/2 (1)

yo = L tan(θ/2)
≈ Lθ/2

≈ L2/R (2)

ysag = R(1− cos(θ/2))

≈ Rθ2/8

≈ L2/2R (3)

Of course, Eq.(1) was employed to eliminate θ from Eqs. (2) and (3). We note in passing
that yo = 2ysag.

The offset, y = d− yo, of the beam relative to the center of the D quad is obtained by
exploitingsymmetry: the quad converts y′ =− tan(θ/2)≈−θ/2 to y′ = tan(θ/2)≈ θ/2.
In the thin quadrupole approximation we therefore have,

∆y′ ≈ θ =
y
f

=
d− yo

f
, (4)

where f is the focal length of the quadrupole.3

While d represents the offset of the D quad relative to the center line, it is more
practical to write its offset relative to the equipotential. This can be done by combining
Eqs. (2), (3), and (4).

d− ysag = (d− yo)+(yo− ysag) = f θ + L2/2R

For convenience, we will eliminate f in favor of the phase advance per cell, µ, using
the relation for a thin lens FODO cell, obtained by “circular reasoning” [6],

sin(µ/2) =
L

2 f
, (5)

3In the thin lens approximation, ∆y′ is approximately independent of the initial y′ if the angles are suffi-
ciently small. More correctly, this independence applies to the change in transverse momentum. For a dis-
cussion, see reference [5].
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while simultaneously using Eq.(1) to eliminate θ.

d− ysag =
(

L
2sin(µ/2)

) (
2L
R

)
+

L2

2R

=
L2

R

(
1
2

+
1

sin(µ/2)

)
(6)

To make a numerical estimate of this offset at the high energy end of the linac, we take
L ≈ 19m, µ ≈ π/2, and R≈ 6400km. Eq.(6) then yields d− ysag ≈ 108µm.

Dispersion.

The dispersion can be estimated easily using two observations: (1) in passing through
a thin bending magnet, the slope of the dispersion function, D′, changes by an amount
approximately equal to the bend angle; (2) by symmetry, the dispersion attains its maxi-
mum (minimum) value at the center of the focussing (defocussing) quadrupole. Imagine
replacing the offset thin (defocussing) quadrupole with a sandwich of four elements, all
on-axis: a thin quadrupole, two thin dipoles, and another thin quadrupole, each element
at half strength. The focussing quadrupole is replaced by two thin quadrupoles of half
strength, with no intermediate dipoles. In passing from the center of the defocussing
sandwich through one of the thin dipoles, the dispersion state vector changes

from

(
Dmin

0

)
to

(
Dmin
θ/2

)
.

We obtain the following equation by following this state vector through the remaining
elements to the middle of the focussing quad.(

Dmax
0

)
=

(
1 0

−1/2 f 1

)(
1 L
0 1

)(
1 0

1/2 f 1

)(
Dmin
θ/2

)
=

(
1 + L/2 f L
−L/(2 f )2 1−L/2 f

)(
Dmin
θ/2

)
The bottom component provides the value of Dmin; this, in combination with the top
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component, then gives us Dmax.

0 = −Dmin
L

(2 f )2 +
θ
2

(
1− L

2 f

)
⇒ Dmin =

2 f
L

(
1− L

2 f

)
· f θ

=
f θ

sin(µ/2)
(1− sin(µ/2))

Dmax =
(

1 +
L

2 f

)
Dmin + L

θ
2

= (1 + sin(µ/2))Dmin + sin(µ/2) f θ

=
cos2(µ/2)
sin(µ/2)

f θ + sin(µ/2) f θ

=
f θ

sin(µ/2)

Notice that Dmax−Dmin = f θ = y. Our final step is to substitute for f θ using Eqs. (1)
and (5).

Dmin =
L2

Rsin2(µ/2)
(1− sin(µ/2))

Dmax =
L2

Rsin2(µ/2)

Using the same parameters as before, this provides the numerical estimate, at the
high energy end of the linac,

Dmin = 0.032mm, Dmax = 0.11mm.

If we take a large ∆p/p≈ ∆E/E = 0.02, because of BNS damping, and assume that
the “invariant emittance” γεy/π≈ 100nm and βy ≈ 40 m at a point where the electron’s
energy is E = 100 GeV, then

Dmax ·
∆p
p

= 2.2µm compared to σy =
√

βyεy/π = 4.6µm . (7)

Synchrotron radiation.

Vertical bending will produce synchrotron radiation, which, in its turn, will add to the
vertical emittance of the beam. At high energy, the total energy radiated by one electron
is given by the expression,4

U =
Z

(cdt)
1

6πεo

(
e
ρ

)2

γ4 ,

4See, for example, Equations 8.6 and 8.10 of Edwards and Syphers. [3]
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where, ρ is the bend radius, γ is the relativistic 1/
√

1− (v/c)2, and the other variables
need no introduction.5 If we substituteZ

(cdt) ≈ `, the length of the quad,

γ = E/mc2,

ρθ ≈ `, and use

e2 = 4πεo mc2 re

then we obtain the result,

U ≈
(

2
3

re

(mc2)3

)
E4`〈1/ρ2〉

≈ (1.41×10−5 mGeV−3) ·E4θ2/` . (8)

Using the same parameters as before, θ≈ 5.6µrad; at the high energy end of the
linac, E ≈ 500 GeV, and `≈ 1 m; our estimate of the total radiated energy (per electron
per bend) is about 28 keV. Put another way, the ratio, U/E ≈ 6×10−8.

Emittance growth.

It is inconceivable that such a small fractional change in beam energy could seriously
damage the emittance, but we will estimate its effect anyway. The additional invariant
emittance due to synchrotron radiation is approximated as6

∆(γεy/π) = ∆(γσ2
y/βy) ≈

1
2mc2 N (D2

max/βy )
σ2

w

E
, where (9)

N = U/w , the expected number of photons emitted per electron,

w =
4

5
√

3
γ3
~

dθ
dt

≈ 4

5
√

3

(
E

mc2

)3

~c(θ/`), average energy per photon,

σ2
w = 34

3
8

w2, variance of photon energies.

This expresses the fact that a variance in energies of the radiated photons feeds into the
energy spread in the beam, which we convert, via the local dispersion, into an increased
invariant emittance. Except for noting that ∆(γεy/π) scales as E6/ρ3, we will forego the
pleasure of simplifying these equations, preferring a numerical calculation. Plugging in
the same numbers as before, estimating βy ≈ 60 m, and using our previous estimates for
U and Dmax, we obtain, ∆(γεy/π)≈ 1.8×10−7 nm – as expected, a very small number.

5Throughout the following discussion, we will avoid confusion of relativistic symbols with their equiva-
lent lattice function symbols by using βy, αy , and γy for the latter. This will have the additional advantage of
constantly reminding us that they refer to the vertical plane.

6The equations we use here are explained in Section 8.3 of Edwards and Syphers. [3] In writing it this
way we are using the “fact” that both D and and βy achieve their maximum value at the same point, so that
γyD2

max = D2
max/βy, since αy = 0 at that point.
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2 Localized sharp bends

Although the 2 µm offset predicted by Eq.(7) is not catastrophic, neither is it completely
negligible. We will now consider eliminating it by employing the second scenario: con-
structing a Main Linac that is laser straight except for highly localized bends at a few,
widely separated locations. These bend sites then allow us to follow the equipotential
in a coarser, piece-wise fashion. If we think of bending every kilometer, or so, then
the bend angle should be about 160 µrad. We’ll take this as the “canonical” value for
calculations in this section.

We will proceed again in a minimalist way. However, this time we cannot bend
the beam by displacing quadrupoles; Eq.(4) indicates that the beam would have to pass
through the quad about 5 or 6 cm off axis. As alternatives, (a) new bend sections could
be inserted into the lattice, matching linear optics with Main Linac cells upstream and
downstream, (b) new dipoles could be inserted into already existing drift spaces, or
(c) dipole fields could be introduced into a few already existing quadrupoles, changing
them into combined function elements. The last strategy represents a smaller modifica-
tion of existing lattice hardware and optics, so we will adopt it here. Other possibilities
could be considered at a later date.

Dispersion.

For a reason soon to be made apparent, the total bend angle is distributed across four
neighboring (combined function) dipoles, as shown in Figure (2a). (For the time being,
ignore Figure (2b).) The dispersion wave that this would launch is illustrated in Fig-
ure 3. For this calculation, horizontal dipole fields have been added to four quadrupoles
— QQ0503, QQ0504, QQ0505, and QQ0506, near the beginning of the Main Linac’s
Line 2 — so that each element bends the beam through 40 µrad. To keep matters sim-
ple, it is assumed that sector bends are used so that (a) the “fiducial” or “reference” orbit
passes through the zero of the quadrupole component and (b) we may ignore edge fo-
cussing associated with a rectangular magnet. The curves plotted in Figure 3 illustrate
two definitions of “dispersion,” which is essentially a differential of an orbit with re-
spect to fractional momentum, ∆p/p: the calculation of the solid curve used ∆p/p at
the entrance to the Main Linac, while local ∆p/p was used to produce the dashed curve.
Physics and orbit differentials are the same in both cases; the differences are only a mat-
ter of presentation. The first definition makes it easier to compare orbits at different lo-
cations in the linac. However, emittance growth from synchrotron radiation depends on
the local definition, so we will use it in all subsequent calculations, and prefix a “local”
label as a reminder.

Figure 4 shows local dispersion waves launched at ten locations separated by about
1 km; initial wave amplitudes are about 4 mm at the high energy end of the linac. Each
one has been truncated after a few oscillations, and the individual dispersions have not
been summed. The dipole fields required to bend the beam through 40 µrad at each
location – as was sketched in Figure (2a) – can be found in the second column of Table 1.
Field values grow from≈ 160 Gauss to≈ 650 Gauss because the beam energy increases
between the combined function elements.
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Achromats.

It is difficult for one accustomed to dispersions on the order of meters to think that a
4 mm dispersion wave is a matter of concern. However, putting this number back into
Eq.(7), we see that

Dmax ·
∆p
p

= 80µm compared to σy =
√

βmaxεy/π = 4.6µm

In absolute terms, 80 µm seems a small number, but, as it is more than an order of magni-
tude greater than the beam width expected from transverse emittance, we will consider
removing the dispersion by bending the beam with a “partial” achromat.

Again, we adopt a minimalist approach, making the fewest changes to the already
existing design. Achromats in accelerator physics have been studied from several points
of view. [1, 2, 4, 7, 8, 9, 10] Typically, symmetries or special arrangements of elements
in the design result in cancellations, resulting in a beamline that is “transparent” in all
six phase space variables. Although there are some exceptions [7], most people seem
to define “achromat” using this condition, according to which the transfer map through
an “achromat” is equivalent, at some order, to the identity. We employ a much less re-
strictive criterion; our “achromat” will impose only the condition that two particles with
differing momenta end up on the same orbit after the bend. Our strategy is akin to that of
an 18th century optician designing a simple focussing achromat, as shown in Figure 5. A
focussing lens is replaced by a sandwich of defocussing and focussing lenses, arranged
so that light of two colors at opposite ends of the spectrum have the same focal point,
the idea being that intermediate colors would then be not far off. This is accomplished
by bending rays in the “wrong” direction and compensating with the second lens. Fig-
ure (2b) illustrates how we must analogously distort the fiducial orbit by underbending
with one magnet and compensating with another. Four magnets are necessary to pre-
serve both the bend angle and the overall bend center in going from Figure (2a) to Fig-
ure (2b) while simultaneously getting particles with different momenta to finally end up
on the same orbit.

The third column in Table 1, the one labelled “Adjusted Field,” contains the dipole
fields required to accomplish this distorted, “partial achromatic” orbit, maintaining the
160 µrad bend angle and the overall bend center while zeroing the residual dispersion.
At each location, the maximum fields are an order of magnitude larger than the orig-
inal ones in Column 2. Because we have chosen not to reposition the magnets, their
quadrupole components also contribute to the bend; for completeness, the table’s last
column lists the “effective” dipole field on the (off-axis) fiducial orbit produced by the
quadrupole component. (Values smaller than 10 Gauss have been suppressed.) If the
momentum were the same at every bend site, – which it is not; the accelerating cavities
are not turned off – the total integrated dipole field in the second column would be the
same as that from the last two columns. Even so, the relative change in momentum is
small, and the sums are approximately identical. For example, at the first site, begin-
ning with QQ0503, the summed dipole field from column 2 is an ominous 666 Gauss,
while that from columns 3 and 4 is 674 Gauss.

Notice, by the way, that Figure (2b) did not portray the sense of the bends correctly.
Both positive and negative fields appear in the actual solutions. It is necessary to “bend
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in the wrong direction” in order to accomplish the achromat’s objective.
The results at the lowest energy location are shown in Figure 6. The dashed line fol-

lows the residual dispersion, now completely contained within the≈ 40 m long bending
region, with maximum amplitude of about 0.6 mm. All values are expressed relative to
the curved reference orbit shown in Figure (2a). The maximum orbit distortionof 1 mm
is too large an offset from the central (curved) axis of the local bending magnets. They
would have to be displaced so as to follow the new orbit. A few iterations of these ma-
nipulations should then converge on an acceptable design. However, the final orbit and
its local residual dispersion should not be much different from what we have calculated
here. For now, we simply display these results as indicating the order of magnitude of
the effects.

The orbit distortions at all ten locations — three in Line 2, seven in Line 3 — are
plotted in Figure 7; the corresponding dispersions are shown in Figure 8. A residual
dispersion of 1 mm remains in the neighborhood of the bends. Again assuming that
∆p/p≈ 0.02, we have

Dmax ·
∆p
p

= 20µm compared to σy =
√

βmaxεy/π = 4.6µm

This is a large increase, but it exists only near the bend sites. Away from these sites, the
dispersion is (essentially) zero, and its contribution to emittance is negligible.

We note in passing that an advantage of this calculation is that one can envision
making it operational. Nonetheless, the model that was used possesses a number of un-
realistic features:

• No displacements were made to any elements. The resultant beam offsets in the
quads and cavities would have to be zeroed by displacing these elements and it-
erating to find new solutions.

• Both dipole and quadrupole components contribute to the bend angles, making
control more difficult. Repositioning the elements so as to return the design orbit
to their central axis would solve this problem as well.

• RF cavities were left turned on. Energy increased throughout the bend, and, be-
cause of transverse deceleration, the cavity itself contributed to the solution. This
can be corrected either (a) by realigning the cavities along the new design orbit
or (b) removing the cavities entirely from the bending regions and compensat-
ing elsewhere in the lines. The former alternative could be difficult to achieve in
practice; the second would have a very small (negligible) effect on the transverse
lattice functions, assuming that the quad strengths are also modified in order to
match correctly into the next cell.

These deficiencies are accidental, not essential, features of our analysis. All of them
can be corrected in more refined calculations, and the required changes should not sig-
nificantly alter the final results.
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Synchrotron radiation and emittance growth.

Finally, we estimate the synchrotron radiation and emittance growth incurred by our
second scenario, once again using Eqs.(8) and (9). Values of the variables entering into
these calculations have been tabulated in Table 2 for easy reference; the lengths, `, are
43 cm for the three sets of quads in Line 2 and 98 cm for the seven sets of quads in
Line 3. To ease the clutter a little, values smaller than 10−3, in their respective units,
have been suppressed.

The values of ∆(γεy/π) at all bend locations are plotted in Figure 9. Each site con-
tains one dominant, very sharp bend. Its effect is most apparent near the high energy
end of the linac, where the E6 dependence becomes overwhelming. Even so, the addi-
tional ≈ 1 nm in invariant emittance is less than 1% of the 140 nm vertical emittance
expected within the interaction region.

Notice that although the synchrotron radiation is rather high at the end of the linac,
the ratio

U/E = 49 MeV/473 GeV≈ 10−4 .

is still a small number.

Coherent synchrotron radiation.

So far, we have considered incoherent synchrotron radiation only, not unreasonably,
since the average wavelength of emitted photons is about 5×10−4 angstroms. The spec-
trum is “almost zero” out at wavelengths comparable to the bunch size of approximately
150 µm. Nonetheless, with almost 1011 electrons in a bunch, and with the smallest ra-
dius of curvature recorded in Table 2 being only a few kilometers long, some atten-
tion should be given to the possibility of coherent synchrotron radiation (CSR) from
the bunch as a whole.

The CSR spectrum has support within the wavelength range,

σz < λ< 2a
√

a/ρ ,

where σz is the longitudinal bunch length, a is a transverse dimension (e.g., radius) of
the beam pipe, and ρ is the radius of curvature. These inequalities are approximate: the
one on the left expresses the fact that λ must be larger than internal structure within the
bunch for the radiation to build coherently; the one on the right is a cutoff for propaga-
tion in the presence of walls and the source bunch. [11, 12, 13] From these, we see that
no CSR is possible unless

(σz
√

ρ/2)2/3 < a

Plugging in σz ≈ 150µm and ρ≈ 3 km results in the requirement, a≥ 26 mm, for CSR
to occur. Current design has a≈ 7 mm, so CSR is forbidden, even at the high energy
end of the linac, because of “shielding” from the walls of the beam pipe. However, the
margin of safety is not comfortably large. It may be necessary to reexamine this issue.
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3 Conclusions

We have estimated the dispersive effects produced by bending a beam in the NLC Main
Linac using two scenarios. In the first we assumed a series of small bends continually
distributed along the linac. Approximating the resulting dispersion as what would be
obtained in a periodic lattice, we found the numbers to be small enough to be negligi-
ble. In the second we established a small number of sharper bends at discrete locations
in the linac. In such a case, by choosing the bend fields appropriately, we localize the
dispersion to the region of the bend. While the resultant synchrotron radiation is large
near the high energy end of the linac, the calculated emittance growth remains comfort-
ably small. Coherent synchrotron radiation is barely suppressed by the beam pipe.

Neither of the strategies was developed to the point of being a legitimate design. We
have pointed out ways in which they can be refined and extended if there is a desire to
continue pursuing this subject.
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Figure 1: Description of parameters for describing the CR thin quad calculations.
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(a)

(b)

Figure 2: (a) Gently bending a beam using four dipoles. (b) Achromat strategy sketched
out: four dipoles.

13



0 1000 2000 3000 4000
Azimuth [m]

−6.0

−4.0

−2.0

0.0

2.0

4.0

6.0

D
is

pe
rs

io
n 

[m
m

]

Figure 3: Dispersion launched by a 160 µrad bend.
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Figure 4: Local dispersion waves launched at ten locations.
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Figure 5: Illustration of achromat lens, designed to focus light of two wavelengths to
the same point.
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Figure 6: Orbit deviation required to zero the residual dispersion.
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Figure 7: Orbit deviations required by the partial achromats at all ten locations.
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Figure 8: Corresponding residual dispersion.
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Figure 9: Emittance growth due to synchrotron radiation in sharp bends.
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Magnet Original Field [ Tesla ] Adjusted Field [ Tesla ] Quad Field [ Tesla ]
QQ0503: 0.0164 0.0207
QQ0504: 0.0166 -0.0247 -0.00586
QQ0505: 0.0167 0.159 -0.0597
QQ0506: 0.0169 -0.0228
QQ0911: 0.0307 0.0452
QQ0912: 0.0309 -0.0582 -0.0178
QQ0913: 0.0311 0.309 -0.104
QQ0914: 0.0313 -0.0490
QQ1401: 0.0452 0.0733
QQ1402: 0.0453 -0.100 -0.0321
QQ1403: 0.0455 0.468 -0.147
QQ1404: 0.0457 -0.0785
QQ1801: 0.0260 0.0371
QQ1802: 0.0261 -0.0474 -0.0131
QQ1803: 0.0263 0.260 -0.0895
QQ1804: 0.0264 -0.0408
QQ2204: 0.0322 -0.0499 0.00303
QQ2205: 0.0323 0.319 -0.109
QQ2206: 0.0324 -0.0584 -0.0196
QQ2207: 0.0326 0.0465
QQ2609: 0.0386 0.0550
QQ2610: 0.0387 -0.0703 -0.0195
QQ2611: 0.0389 0.385 -0.132
QQ2612: 0.0390 -0.0604
QQ3102: 0.0450 -0.0699 0.00424
QQ3103: 0.0452 0.446 -0.152
QQ3104: 0.0453 -0.0816 -0.0273
QQ3105: 0.0454 0.0648
QQ3507: 0.0515 0.0734
QQ3508: 0.0516 -0.0934 -0.0260
QQ3509: 0.0517 0.511 -0.175
QQ3510: 0.0518 -0.0803
QQ4001: 0.0580 0.0827
QQ4002: 0.0581 -0.105 -0.0293
QQ4003: 0.0582 0.576 -0.198
QQ4004: 0.0584 -0.0904
QQ4406: 0.0644 -0.0999 0.00607
QQ4407: 0.0645 0.638 -0.218
QQ4408: 0.0647 -0.116 -0.0390
QQ4409: 0.0648 0.0925

Table 1: Magnetic fields producing the bends.
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Magnet E [GeV] γ ρ [km] σw [MeV] U [MeV]
N βy [m] D [mm] ∆(γεy/π) [nm]

QQ0503: 53.79 105268 8.617 0.0256
0.0564 5.66 0.0111

QQ0504: 54.38 106426 -5.829 0.0391 0.00159
0.0843 44.6 0.622

QQ0505: 54.98 107584 1.834 0.128 0.0168
0.271 5.58 -0.652

QQ0506: 55.57 108742 -8.302 0.0293
0.0605 44.8

QQ0911: 101.1 197915 7.421 0.197 0.0117
0.123 8.2 0.013

QQ0912: 101.7 199073 -4.399 0.339 0.0341
0.209 41 0.72

QQ0913: 102.3 200231 1.662 0.913 0.245
0.556 8.09 -0.756

QQ0914: 102.9 201389 -7.145 0.216 0.0136
0.13 40.8

QQ1401: 148.5 290562 6.724 0.689 0.0663
0.199 10 0.0143

QQ1402: 149.1 291720 -3.719 1.26 0.22
0.362 40.4 0.794

QQ1403: 149.7 292878 1.554 3.05 1.28
0.87 9.89 -0.831 0.00371

QQ1404: 150.3 294036 -6.492 0.74 0.0746
0.209 40.3

QQ1801: 191.1 373945 17.08 0.578 0.0629
0.226 11.6 0.0282

QQ1802: 192 375682 -10.35 0.968 0.175
0.374 62.5 1.03

QQ1803: 192.9 377419 3.762 2.7 1.35
1.03 11.3 -1.1 0.00408

QQ1804: 193.8 379156 -16.3 0.632 0.073
0.24 60.3

QQ2204: 236.4 462538 -16.27 1.15 0.162
0.293 60.3 -0.0298

QQ2205: 237.2 464276 3.766 5.02 3.08
1.27 11.6 -1.07 0.013

QQ2206: 238.1 466013 -10.38 1.84 0.411
0.463 62.5 1.06

QQ2207: 239 467750 17.03 1.14 0.155
0.283 11.3

Table 2: Quantities entering the emittance growth calculation.
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Magnet E [GeV] γ ρ [km] σw [MeV] U [MeV]
N βy [m] D [mm] ∆(γεy/π) [nm]

QQ2609: 283.4 554606 17.06 1.89 0.305
0.335 11.6 0.0276

QQ2610: 284.3 556344 -10.34 3.14 0.84
0.554 62.5 1.03

QQ2611: 285.2 558081 3.76 8.73 6.44
1.53 11.3 -1.1 0.0428

QQ2612: 286.1 559818 -16.28 2.04 0.348
0.354 60.3 -0.00219

QQ3102: 330.5 646675 -16.26 3.14 0.621
0.41 62.5 -0.0299

QQ3103: 331.3 648412 3.764 13.7 11.7
1.77 11.3 -1.07 0.0995

QQ3104: 332.2 650149 -10.36 5.01 1.56
0.646 60.2 1.06

QQ3105: 333.1 651886 17.03 3.07 0.584
0.394 11.6

QQ3507: 377.5 738743 17.06 4.46 0.961
0.446 11.3 0.028

QQ3508: 378.4 740480 -10.35 7.41 2.63
0.737 60.2 1.03 0.00185

QQ3509: 379.3 742217 3.762 20.5 20.1
2.03 11.6 -1.1 0.23

QQ3510: 380.2 743954 -16.28 4.78 1.08
0.471 62.5

QQ4001: 425.4 832548 17.06 6.39 1.55
0.503 11.6 0.0281

QQ4002: 426.3 834285 -10.35 10.6 4.24
0.83 62.6 1.03 0.00364

QQ4003: 427.2 836022 3.762 29.3 32.4
2.29 11.3 -1.1 0.482

QQ4004: 428.1 837759 -16.28 6.82 1.74
0.53 60.2 0 0

QQ4406: 472.5 924616 -16.26 9.18 2.59
0.586 62.6 -0.0299

QQ4407: 473.4 926353 3.763 39.9 48.8
2.54 11.3 -1.07 0.846

QQ4408: 474.3 928090 -10.36 14.6 6.49
0.923 60.2 1.06 0.00756

QQ4409: 475.1 929827 17.03 8.92 2.42
0.562 11.6

Table 2: (cont.) Quantities entering the emittance growth calculation.
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