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Energy Distribution in a Relativistic DC Electron Beam
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FNAL

Electron cooling of the 8.9 GeV/c antiprotons in the Recycler ring requires high-quality dc electron
beam with the current of several hundred mA and the kinetic energy of 4.3 MeV.  The only technically
feasible way to attain such high electron currents is through beam recirculation (charge recovery).  The
primary current path is from the cathode at high voltage terminal to ground where the electron beam
interacts with the antiproton beam and cooling takes place, then to the collector located in the terminal, and
finally through the collector power supply back to the cathode.  The energy distribution function of the
electron beam after the deceleration determines the required collector energy acceptance. Multiple and
single intra-beam scattering as well as the dissipation of density micro-fluctuations during the beam
transport are studied as factors forming a core and tails of the electron energy distribution. For parameters
of the Fermilab electron cooling project1, the single intra-beam scattering (Touschek effect) is found to be
of the most importance.

Introduction

The electron cooling device, which is under construction at Fermilab1, employs an
electrostatic acceleration and deceleration to generate a dc electron beam. Some
parameters of this device are listed in Table 1.

Table 1. Parameters of the electron cooling device considered in this paper.

Parameter Symbol Value Units

Beam current Ie 1 A

Electron momentum p 4.8 MeV/c

Cathode radius ac 0.25 cm

Electron temperature at the
cathode

Tc 0.1 eV

Length of electron trajectory l 80 m

Collector potential with respect to
the cathode

collU 2 - 4 kV

A scheme with the electron beam recirculation allows to use a 4.3-MW power beam for
cooling, while the energy dissipated in the electron beam collector is as low as 2-4 kW.
On the other hand, a stable operation of such a device is possible only if the current loss
is very low. In the initial recirculation experiment2, multi-hours operation was kept
uninterrupted only when the lost current δIe was below 10 µA. One of the possible



reasons for the loss is the electron energy spread. Obviously, if the energy of some
electrons is decreased by more than colleU  during the transport, these electrons are

repelled from the collector and lost. Hence, the slowest tail of the energy distribution,
containing 65 1010/ −− −≅≡∆ ee IIδ  portion of the beam, can affect the collector design

and the collU  value.  The energy distribution function is formed primarily by the intra-

beam scattering (IBS) and by the dissipation of density micro-fluctuations during the
beam transport.  An electron with a longitudinal velocity cv <<||  in the beam frame has

the following energy deviation in the laboratory frame:

|||| mcvpvU γβ== .                                                             (1)

Beam acceleration and deceleration preserves this value. A consequence of this formula
is that kinematically the beam longitudinal temperature decreases with the beam energy,
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|||| / pmTvmT c≅≡

where cT  is the initial (cathode) beam temperature. Normally, this value is so small that

the actual longitudinal temperature is determined by other factors.

Core of the Distribution

Two phenomena determine the r.m.s. energy spread in the electron beam: the multiple
IBS and the dissipation of density micro-fluctuations.

a. Multiple Intra-Beam Scattering

Normally, the longitudinal temperature of the accelerated beam is much smaller than the

transverse, or ( )2

|| )(rvv −≡<< ⊥vv  in terms of the velocities in the beam frame. In

this case, the Vlasov equation with the Landau collision integral3 reduces to a RQH�
GLPHQVLRQDO diffusion equation:
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where the diffusion coefficient,
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is independent of the longitudinal velocity. Here en  is the electron density (constant over

a beam cross-section), v  is a 2D vector of the transverse velocity, and
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is the Coulomb logarithm with eD vr ω/⊥=  as the Debye radius , all the values are taken

in the beam frame. For a Gaussian distribution
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it yields

⊥= vLcrnD Cee /2 422/3π  .

This result agrees with the corresponding formula in Ref.4 derived on the basis of Eqs.
(76, 77) of Ref.5 and is two time larger than what was reported in Ref6.

In a more general case of a Gaussian distribution with arbitrary (unequal) transverse

r.m.s. velocities 22 , yx vv  and a constant electron beam density over the cross-section, it

results in
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The diffusion equation (2), solved with the delta-function initial condition,
)()0,( |||||| vvf δ= , leads to the Gaussian distribution
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Taking into account the relation between the velocity in the beam frame and the energy
offset in the laboratory frame (1), the lab frame r.m.s. energy spread follows as an
integral over the beam line:
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where eI  is the electron current, ( ) 2
2/1

2222
4 / cvvaa yxyxn =ε  is the normalized 4D phase

space emittance with yx aa ,  as half-axes of the beam with an elliptical cross-section, and

l is a length of the transport in the lab frame. The normalized emittance is invariant along
the transport line; it is determined by the cathode radius ca  and its temperature cT  as

22
4 / mcTa ccn =ε ; the r.m.s. velocities are expressed as 2

,
2
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, / yxnyx acv ε= . Note that the

energy spread does not depend on the beam energy; therefore, the formula (4) can be
directly applied to the regions where the beam is accelerated or decelerated. For
parameters of the Fermilab electron cooling project with 8=CL , and 6.0≈≈ yx aa cm it

gives 1102 =IBSU eV.

b. Dissipation of Density Fluctuations

One more factor of the energy spread widening is the dissipation of the density micro-
fluctuations in the electron beam after acceleration. An excessive potential energy

3/12
enCe≅  (beam frame) is transformed into the longitudinal temperature, giving rise to

the r.m.s. energy spread

( ) ( )22

3/1

2

3/52 mc
eca

I
rCU

e

e
eDF 





≅

π
γβ

Here C is a numerical coefficient of about 1 estimated in Ref6 as C=1.9. For the

mentioned parameters, it yields 802 ≅DFU eV. The actual contribution of the effect can

be somewhat less because the electrons make only about one plasma oscillation during
their drift at the maximum energy.

The contribution of the micro-fluctuations slightly changes the spread resulting from the

IBS: 130222 =+= DFIBS UUU eV. Note that this spread is not significant for the

electron cooling process, which in any scenario could tolerate an order of magnitude
higher energy spread.

Tails of the Distribution

a. Gaussian Tails of the Core

The Gaussian distribution (3) can be also presented as
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A portion of particles )(U∆  with the energy deviation exceeding a given value U will be
referred to as losses. For the Gaussian distribution the losses are given by the

complementary error function )/()exp()exp()/2()erfc( 22 ππ xxdxxx
x

−≅−≡ ∫
∞
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It follows from Eq. (5) that the energy threshold corresponding to the level of losses of
6101)( −⋅=∆ U  is 275.4 UU = . For the parameters discussed here it gives 580=U eV.

In the following subsection it is shown though that the losses, caused by the Touschek
effect (single IBS), significantly exceed this Gaussian tail contribution ZKHQ� WKH� ORVVHV
OHYHO�LV�ORZ�HQRXJK�

b. Touschek Effect

When relative velocities of the scattered electrons are smaller then 137/cc ≈α , the
classical Rutherford formula for the differential cross-section can be used. In a
symmetrized form for both particles, it looks as
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where 0v  is the relative velocity of the electrons and χ  is the scattering angle in the

center-of-mass system. The losses calculation is made below following the methods of
Refs.7,8. The scattering event can be described by two angles: the angle θ  between the
final relative velocity and the longitudinal axis and the angle ϕ  between a projection of
the final relative velocity on the transverse plane and the initial relative velocity. The
introduced angles are related to each other as ϕθχ 222 cossincos = . The cross-section

for scattering events in which a particle acquires the longitudinal velocity larger than ||v

is equal to
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The instantaneous loss rate follows as
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(beam frame); the factor ½  appears because the events are double-counted by the above
integral. For the Gaussian distribution
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the above 4D integral reduces to a single integral8 which allows for the losses to be
presented as an integral along the beam line:
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Here
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is basically a ratio of the longitudinal velocity in the beam frame to its thermal transverse
velocity, and
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is a special function, which is convenient to introduce. Until the longitudinal velocity
reaches the value of both transverse thermal velocities,

( )22222
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the Touschek losses (6) do not contain any exponential factor, decreasing with energy as
slowly as its second power 2/1)( UU ∝∆ . It means that the tails of the energy
distribution due to single IBS are orders of magnitude higher than the ones resulting from
the multiple IBS (5). When the longitudinal velocity is smaller than both transverse
thermal velocities, the Touschek losses (6) are simply related to the core spread caused
by the multiple IBS (4) as:
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In the opposite limiting case of 22
|| ⊥>> vv , the asymptotic calculations of the loss integral

can be performed. For a round beam with 222
⊥≡= vvv yx  it yields
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In this asymptotic case, the losses decrease very rapidly with the limiting energy, U .
When the envelope oscillations along the beam line are insignificant, the inverse problem
of finding the required energy acceptance U  for given losses is weakly sensitive to the
value of these losses, giving practically in any case ⊥≅ pvU . For a 5-mm radius round

beam and the beam parameters listed in Table 1, ⊥pv ≈ 1.5 keV. When the envelope
variations are significant, parts of the beam trajectory with the highest temperature (the
smallest beam size) mainly determine the loss integral (6).

For the Fermilab electron cooling project, the designed beam envelope is presented in
Fig.1.

Figure 1: Beam envelopes (green and red lines) and dispersion functions (black and
blue) in the designed electron transport line for the Fermilab electron cooling system.

For this envelope, the Touschek losses at the interesting level 65 1010 −− −≅  are mainly
determined by the bend portions of the trajectory where the beam is the smallest, and,
consequently, the hottest. Note that the beam is also non-round there. For this design, the
losses (6) were integrated numerically; the result is presented in Fig.2.
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Figure 2: The Touschek losses as a function of the lab-frame threshold energy U,
numerically calculated using the beam envelope in Fig. 1.

It is interesting to note that the beam magnetization at the cathode increases the average
beam size in the transport line and, thus, reduces the acquired energy spread. For an
angular momentum dominated beam9, minimal beam size inside the bends increases with

the magnetic flux Φ  at the cathode as Φ∝ . Therefore, the maximum transverse
temperature goes as Φ∝ /1 . Thus, the flux increase diminishes the transverse
temperature present in the exponent of the Touschek losses. The r.m.s. energy spread also

goes down with the flux as  Φ∝ /1 .

Other phenomena, such as scattering on the cooled antiprotons, elastic and inelastic
scattering on the residual gas were found to be insignificant for the discussed parameters.

Conclusions

1. Our numerical simulations show that the single IBS places a limitation for the
minimum collector voltage, Ucoll. To provide the acceptable level of losses of

6105.2 −⋅≈∆ , the value of Ucoll should be above 2 kV. Detailed simulations of the
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low-energy electron trajectories in the collector regions shall be done to take into
account the beam space charge.

2. The rms energy spread of the beam due to the multiple IBS is below the acceptable
limit for the electron cooling process.

3. Tails of the multiple IBS Gaussian distribution are insignificant in comparison with
the single large-angle IBS tails.

4. Any beam size increase (due to the angular momentum or the beam space charge) in
the beam line regions with fixed focusing properties (such as bends) is beneficial for
both the multiple and single IBS as it leads to a lower transverse temperature and
lower beam density.
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