
Chapter 11

TRANSVERSE COUPLED

BUNCH INSTABILITIES

11.1 Resistive Wall

If there are M identical equally spaced bunches in the ring, there are � = 0; � � � ; M�1
transverse coupled modes when the center-of-mass of one bunch leads its predecessor by

the betatron phase of 2��=M . The transverse growth rate for the �-th coupled-bunch

mode is given by Eq. (10.45). Including chromaticity, it becomes
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where !q = (qM+�)!0 + !� +m!s, the bunching factor B = M�L=T0 has been used,

� = !��L is the chromaticity phase shift across the bunch of full length �L and T0 is

the revolution period. Here, we assume that all the bunches are executing synchrotron

oscillations in the same longitudinal azimuthal mode m.

The most serious transverse coupled-bunch instability that occurs in nearly all stor-

age rings is the one driven by the resistive wall [1]. Since� Re Z?
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(negative) when the angular frequency ! is positive (negative), the betatron line at the
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Figure 11.1: The �0:4!0 betatron line in the Tevatron dominates over all other be-

tatron lines for the � = 1093 mode coupled-bunch instability driven by the resistive

wall impedance.

lowest negative frequency acts like a narrow resonance and drives transverse coupled-

bunch instabilities. Take, for example, the Fermilab Tevatron in the �xed-target mode,

where there are M = 1113 equally spaced bunches. The betatron tune is �� = 19:6.

The lowest-negative-betatron-frequency line is at (qM+�)!0 + !� = �0:4!0, for mode

� = 1093 and q = �1. The closest damped betatron line (q = 0) is at (1113�0:4)!0,

but Re Z?

1
is only �

p
0:4=1112:6 the value at �0:4!0. The next anti-damped betatron

line (q = �2) is at �1113:4!0, with Re Z?

1
equal to

p
0:4=1113:4 the value at �0:4!0.

This is illustrated in Fig. 11.1. Thus, it is the �0:4!0 betatron line that dominates.

From Eq. (11.1), the growth rate for this mode can therefore be simpli�ed to
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where � = !��L and the form factor is
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which is plotted in Fig. 11.2 for the sinusoidal modes. For zero chromaticity, only the

m = 0 mode can be unstable because the power spectra for all the m 6= 0 modes are

nearly zero near zero frequency. Since the perturbing betatron line is at extremely low
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Figure 11.2: Plot of form factor F 0m(!�L��) for modes m = 0 to 5. With the

normalization in Eq. (10.43), these are exactly the power spectra hm.

frequency, we can evaluate the form factor at zero frequency. For the sinusoidal modes,

we get F 0

0
(0) = 8=�2 = 0:811.

One method to make this coupled-bunch mode less unstable or even stable is by

introducing positive chromaticity when the machine is above transition. For the Tevatron

with slip factor � = 0:0028, total bunch length �L = 5 ns, and revolution frequency

f0 = 47:7 kHz, a chromaticity of � = +10 will shift the spectra by the amount � =

!��L = 2�f0��L=� = 5:4. The form factor and thus the growth rate is reduced by more

than 4 times. However, from Figs. 7.5 and 10.5, we see that the spectra are shifted by

!��L=� = 1:7 and the m = 1 mode becomes unstable. Another method for damping the

instability is to introduce a betatron angular frequency spread using octupoles, with the

spread larger than the growth rate.

A third method is to employ a damper. Let us derive the displacements of consecu-

tive bunches at a beam-position monitor (BPM). Suppose the �rst bunch is at the BPM

with betatron phase ��0 = 0; its displacement registered at the BPM is proportional

to cos ��0 = 1. At that moment, the next bunch has phase 2���=M in advance, where

�� = qM+� = �20. When this bunch arrives at the BPM, the time elapsed is T0=M and
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Figure 11.3: Di�erence signal at a BPM displaying the displacement of every 20th

bunch, when the � = 1093 mode of transverse coupled-bunch is excited by the

resistive wall impedance.

the change in betatron phase is !�T0=M = 2���=M . The total betatron phase on arrival

at the BPM is therefore ��1 = 2���=M + 2���=M = 2�(��+ ��)=M = (�0:4)2�=M , and

the displacement registered is cos��1 When the nth consecutive bunch arrives at the

BPM, its phase will be ��n = n(�0:4)2�=M . This is illustrated in Fig. 11.3 when the

BPM is registering every 20th bunch [2]. What we see at the BPM is a wave of frequency

�0:4 harmonic or about 19.1 kHz. Because we know that the bunches follow the pattern

of such a slow wave, we only require a very narrow-band feedback system to damp the

instability. Usually the adjacent modes � = 1092; 1091; � � � will also be unstable at

the �1:4!0, �2:4!0, � � � betatron lines; but the growth rates will be smaller.

When all the h = 1113 rf buckets are �lled with 6�1010 protons each in one scenario
of the Tevatron in the �xed-target mode, the average total current isMIb = 0:511 A. The

vertical resistive-wall impedance has a real part Re Z?

1
= 43:74 M
/m at the revolution

harmonic. Thus, at �0:4!0, it becomes Re Z?

1
= �69:16 M
/m. At the injection energy

of E0 = 150 GeV and zero chromaticity, the transverse coupled-bunch growth rate driven

by the resistive-wall impedance is ��1

� = 232 s�1 and the growth time is 4.30 ms or 204
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revolution turns. The mean radius of the Tevatron ring is R = 1 km. In fact, this

growth time is more or less the same for all accelerator rings [3]. For example, preceding

the Tevatron, there are the Main Injector and the Booster. All of them have the same

53-MHz rf. The Main Injector has 588 rf buckets and the Booster has 84 rf buckets.

First, if all the buckets of each ring are �lled, the average total current MIb should

be the same for all the 3 rings. Second, the beam energy E0 scales as the size of the

ring or the mean radius R and betatron tune �� scales as
p
R. Third, the resistive-wall

impedance, as given by

Z?

1
(!) = [1� i sgn(!)]

2Rc�
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(11.4)

in Eq. (1.44), where b is the beam pipe radius, Æskin is the skin depth, and � is the

resistivity, scales as R3=2 because the revolution frequency scales as R�1. Substituting

into Eq. (11.2), we �nd that the growth rate turns out to be independent of the size of

the ring. Of course, usually there are di�erences in the vacuum chamber, and number

of particles per bunch, and also the residual betatron tune. However, it is safe to say

that the growth time of transverse couple-bunch instability for every completely �lled

accelerator ring should be of the order of a few to a few tens of milliseconds. Although

the growth time is independent of the size of the ring, the growth time in turn number is

inversely proportional to the size of the ring. Thus, for the Very Large Hadron Collider

(VLHC) under consider consideration with a circumference of 233 km, the growth time

will be only 5.5 revolution turns according to this scaling and assuming the residual

tune to be 1

2
. For this reason, large machines will require powerful feedback systems, for

example, criss-crossing feedback and/or one-turn correction scheme.

11.2 Narrow Resonances

The narrow higher-order transverse resonant modes of the rf cavities will also drive

transverse coupled-bunch instabilities. The growth rates are described by the general

growth formula of Eq. (11.1). When the resonance is narrow enough, only the betatron

lines closest to the resonant frequency !r=(2�) contribute in the summation. The growth

rate is therefore given by Eq. (11.2), where two betatron lines are included.
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where q and q0 satisfy

� �!r � !q =(qM + �+ �� +m�s)!0

!r � !q0 =(q0M + �+ �� +m�s)!0 :
(11.6)

Similar to the situation of longitudinal coupled-bunch instabilities, mode � = 0 and

mode � = 1

2
M if M is even receive contributions from both the positive-frequency side

and negative-frequency side. In the language of only positive frequencies, there are the

upper and lower betatron sidebands 
anking each revolution harmonic line. The lower

sideband originates from negative frequency and is therefore antidamped. For these two

modes, both the upper and lower sidebands correspond to the same coupled-bunch mode.

If the resonant frequency of the resonance leans more towards the lower sideband, there

will be a growth. If the resonant frequency leans more towards the upper side band,

there will be damping. This is the Robinson's stability analog in the transverse phase

plane. However, sometimes it is not so easy to identify which is the lower sideband

and which is the upper sideband. This is because the residual betatron tune [��] or

the noninteger part of the betatron tune can assume any value between 0 and 1. If

[��] > 0:5, the upper betatron sideband of a harmonic will have a higher frequency than

the lower betatron sideband of the next harmonic.

There is one important di�erence between transverse coupled-bunch instabilities

driven by the resistive-wall impedance and by the higher-order resonant modes. The

former is at very low frequency and therefore the form factor F 0

0
is close to 1 when the

chromaticity is zero. The latter, however, is at the high frequencies of the resonances.

The form factor usually assumes a much smaller value unless the bunch is very short

and we sometimes refer this to \damping" from the spread of the bunch.

This instability can be observed easily in the frequency domain at the lower betatron

sidebands 
anking the harmonic lines. If a particular lower betatron sideband grows

strongly, we subtract the betatron tune �� (not [��]) to �nd out which harmonic line it

is associated with. Then from Eq. (11.6), we can determine which coupled-bunch mode �

it is. To damp this transverse coupled-bunch instability, one can identify the o�ending

resonant modes in the cavities and damp them passively using an antenna. A tune

spread due to the slip factor � or from an octupole can also contribute to the damping.

When the above are not eÆcient enough, a transverse bunch-to-bunch damper will be

required. If we can identify the annoying mode, a mode damper of narrow band will

do the job. To damp couple-bunch instabilities without knowing the annoying mode, a

wideband bunch-by-bunch damper is necessary.
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Similar to longitudinal coupled-bunch instabilities, transverse coupled-bunch insta-

bilities can also be damped by modulation coupling from an uneven �ll in the ring

discussed in Sec. 9.3.4.
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11.3 Exercises

11.1. For the example of resistive-wall driven coupled-bunch instability of the Tevatron

at the �xed target mode, try to sum up the contribution for all frequencies for the

� = 1093 mode and compare the result of taking only the lowest frequency line.

11.2. For the same example in Exercise 11.1, compare the growth rates of mode � =

1092; 1091; � � � ; with mode 1093. How many modes do we need to include so

that the growth rate drops to below 1

4
of that of mode 1093?

11.3. For a narrow resonance that has a total width larger than 2[��]!0 where [��] is

the residual betatron tune and the bunch power spectrum is much wider than the

revolution frequency, show that the growth rate is given by
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where q1 and q2 are some positive integer so that

(q1M � �� ��)!0 � !r ;

(q2M + �+ ��)!0 � !r : (11.8)

Such q1 and q2 are possible only when � = 0 or � = M=2 if M is even. There-

fore whether the coupled-bunch mode is stable or unstable depends on whether

the resonance is leaning more towards the upper betatron sideband or the lower

betatron sideband.
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