
Chapter 13

MODE COUPLING

As the beam intensity increases, the shift of each longitudinal azimuthal mode be-

comes so big that two adjacent modes overlap each other. When this happens, the

longitudinal azimuthal mode number m is no longer a good eigennumber, and we can no

longer represent the perturbation distribution  1 as a single azimuthal mode. Instead,

 1 should be represented by a linear combination of all azimuthal modes. This phe-

nomenon has been referred to as \mode mixing," \mode coupling," \strong head-tail,"

and \transverse or longitudinal turbulence."

13.1 Transverse

Let us �rst consider transverse instability driven by a broadband impedance. This

implies a single-bunch mechanism. We also set the chromaticity to zero. For the mth

azimuthal mode and kth radial mode, Eq. (10.33) or (11.1) becomes

(
� !� �m!s)Æmm0Ækk0 =Mmm0kk0 (13.1)

where, with the aid of Eq. (10.33), the matrix M is de�ned as

Mmm0kk0 = � ieIbc

2!�E0�L

Z
d!Z?

1 (!)
~�m0k0(!)~��mk(!)Z

d!~�mk(!)~�
�
mk(!)

: (13.2)

The summations have been converted to integrations because the impedance is so broad-

band that there is no need to distinguish the individual betatron lines. A further sim-

13-1
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pli�cation is to keep only the �rst most easily excited radial modes. Then, the problem

becomes coupling in the azimuthal modes.

SinceRe Z?
1 (!) is odd in ! and ImZ?

1 (!) is even in !, only ImZ?
1 (!) will contribute

to the diagonal terms of the matrix M giving only real frequency shifts which will not

lead to instability. As the beam current becomes larger, two modes will collide and

merge together, resulting in two complex eigenfrequencies, one is the complex conjugate

of the other, thus introducing instability. Therefore, coupling should originate from the

o�-diagonal elements closest to the diagonal. We learn from Eq. (10.41) that the mth

mode of excitation ~�m(!) is even in ! when m is even, and odd in ! when m is odd.

Thus, it is Re Z?
1 (!) that gives the coupling.

The eigenfrequencies are solved by

det[(
� !� �m!s)I �M ] = 0 : (13.3)

We recall Eq. (10.21), Sacherer integral equation for transverse instability in Chapter 10,

(
� !� �m!s)�mRm(r) =

� i�e
2MNc

E0!�T 2
0

g0(r)
X
m0

im�m0

�m0

Z
r0dr0Rm0(r0)

X
q

Z?
1 (!q)Jm0(!qr

0)Jm(!qr) ; (13.4)

where g0(r) is the unperturbed normalized distribution in the longitudinal phase space

in circular coordinate. Clearly the equation is solvable if g0(r) is a Æ-function. This is

the air-bag model with beam particles residing only at the outer edge or g0(r) / Æ(r� �̂ )
with �̂ representing the half length of the bunch.

Let us choose a simple transverse wake which is a constant W1. The corresponding

transverse impedance is

Z?
1 (!) =

W1

! + i�
= }

�
W1

!

�
� i�W1Æ(!) : (13.5)

The in�nite matrix is truncated and the eigenvalues solved numerically. The solution

is shown in Fig. 13.1 [2]. This impedance corresponds to a real part that falls o� as

frequency increases. The imaginary part is a Æ-function at zero frequency, and therefore

interacts with the m = 0 mode only, since all m 6= 0 modes have spectral distribution
~�m(0) = 0. This explains why all other modes remain almost unshifted with the excep-

tion of m = 0. The downward frequency shift of the m = 0 mode as the beam intensity

increases from zero is a general behavior for short bunches. The transverse wake force
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�1 =
�eIbcW1

4E0!�!s

Figure 13.1: Transverse mode frequencies (
�!�)=!s versus the current inten-

sity parameter �1 for an air-bag bunch distribution perturbed by a constant wake

potential W1. The instability occurs at �1 � 1:8, when the m = 0 and m = �1

modes collide. The dashed curves are the imaginary part of the mode frequencies

or growth/damping rate for the two colliding modes.

produced by an o�-axis beam has the polarity that de
ects the beam further away from

the pipe axis. This force acts as a defocusing force for the rigid beam mode, and therefore

the frequency shifts downward. Such a downshift of the betatron frequency is routinely

observed in electron accelerators and serves as an important tool of probing the impe-

dance. Notice that unlike the situation of the longitudinal mode coupling described in

Chapter 7 and later in this chapter, there is no symmetry of the azimuthal modes about

the m = 0 mode. This is because these are now sidebands of the betatron lines, and the

betatron lines do not have any symmetry about the zero frequency. The implication is

that we need to include both positive and negative azimuthals in the discussion.

Eventually the m = 0 shifts downwards and meets with the m = �1 mode, thus
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exciting an instability. The threshold is at

�1 =
�eIbcW1

4E0!�!s
� 1:8 ; (13.6)

and is bunch-length independent. We can also obtain an approximate threshold from

Eqs. (13.1) and (13.2) by equating the frequency shift to !s, and get

eIbc Z
?
1

��
e�

2E0!�!s�L
� 1 ; (13.7)

where

Z?
1

��
e�

=

Z
d!Z?

1 (!)hm(!)Z
d!hm(!)

(13.8)

is called the e�ective transverse impedance for mode m. Comparing Eqs. (13.6) and

(13.7), we �nd the two thresholds are almost the same except for the bunch-length

dependency, which we think should be understood as follows. The imaginary part of the

impedance in Eq. (13.5) is a Æ-function at zero frequency which interacts only with the

m = 0 mode. As the bunch length becomes shorter, the spectrum spreads out wider,

so that the spectrum at zero frequency becomes smaller, and Z?
1

��
e�

is also smaller

accordingly. In fact, from Eq. (10.43), the normalization of the power spectrum in the

denominator of Eq. (13.8) is just ��1
L

and from Eq. (10.42), h(0) is �L independent. It is

clear that Z?
1

��
e�
/ �L, thus explaining why �1 in Eq. (13.6) is bunch-length independent.

Now consider the situation when the impedance is a broadband resonance. For a

very short bunch, the m = 0 mode extends to very high frequencies and will cover part

of the high-frequency capacitive part of the resonance. Thus, the e�ective impedance

Z?
1 je� can become small due to the cancellation of the inductive and capacitive parts. At

the same time, the peak of Re Z?
1 is far from the peak of the m = �1 mode, thus making

the coupling between the m = 0 and m = �1 mode very weak. Since the frequency shift

is small and the coupling is weak, it will take a much higher beam current for the m = 0

mode to meet with the m = �1 mode, thus pushing up the threshold current. For a long

bunch, the m = 0 mode has a small frequency spread. If it stays inside the inductive

region where ImZ?
1 is almost constant, ImZ?

1 can be taken out of the integral and

Z?
1

��
e�

will be almost constant. Therefore, the threshold current, given by Eq. (13.7),

increases linearly with the bunch length. When the bunch is very long, the m = �1 and
even m = �2 and m = �3 modes may stay inside the constant inductive region of the
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impedance. This implies that the higher azimuthal modes also interact strongly with

the impedance and these modes will have large shifts so that the threshold can become

much smaller. Several collisions may occur around a small beam-current interval and

the bunch can become very unstable suddenly.

The transverse mode-coupling instability was �rst observed at the DESY PETRA

and later also at the SLAC PEP and the CERN LEP. The strong head-tail instability

is one of the cleanest instabilities to observe in electron storage rings [1]. In particular,

one may measure the threshold beam intensity when the beam becomes unstable trans-

versely. Another approach is to measure the betatron frequency as the beam intensity is

varied. From the shift of the betatron frequency per unit intensity increase, the trans-

verse wake can be inferred. The transverse motion of the bunch across its length can

also be observed easily using a streak camera.

In the longitudinal mode-mixing instability, the bunch lengthens as the beam be-

comes unstable essentially without losing beam particles. This does not happen in the

transverse case. The instability is devastating; as soon as the threshold is reached,

the bunch disappears. However, so far no strong head-tail instabilities have ever been

observed in hadron machines.

Radiation damping is too slow to damp the strong head-tail instability. A damper

signi�cantly faster than the angular synchrotron frequency !s is required. As shown in

Fig. 13.1, it is modem = 0 that is shifted downward to collide with modem = �1 so as to
start the instability. But modem = 0 is the pure rigid dipole betatron oscillation without

longitudinal excitation. Therefore, if we can introduce a positive coherent betatron tune

shift, it will slow this mode from coming down and therefore push the threshold to a

higher value. A conventional feedback system is resistive; i.e., the kicker is located at

an odd multiple of 90Æ from the pickup. Here, a reactive feedback system is preferred

[2]. The kicker is located at an even multiple of 90Æ from the pickup. In a two-particle

model, where the bunch is represented by two macro-particles, the equations of motion

are, in the �rst half of the synchrotron period,

d2y1
dn2

+ (2���)
2y1 = �(y1 + y2) ;

d2y2
dn2

+ (2���)
2y2 = �(y1 + y2) + �y1 ; (13.9)

where y1 and y2 are, respectively, the transverse displacements of the head and tail

macro-particles, � is the gain of the reactive feed back, and � represents the e�ect of the
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transverse wake from head to tail. Notice that the reactive feedback acts on the center

of the bunch and is in phase with the particle displacements. It therefore modi�es ��
by introducing a tune shift. The instability threshold can then be raised by properly

choosing the feedback strength �. In low-energy hadron machines, the space charge tune

shift constitutes a natural reactive feedback system which tends to shift the m = 0 mode

upwards. We shall study this in more detail in the next section.

This instability can also be damped by Balakin-Novokhatsky-Smirnov (BNS) damp-

ing [3], which delivers a betatron tune spread from the head of the bunch to the tail. This

can be achieved by tilting the longitudinal phase space distribution of the bunch so that

the tail has a lower energy relative to the head through chromaticity. Another method to

implement BNS damping is to introduce a radio-frequency quadrupole magnet system,

so that particles along the bunch will see a gradual shift in betatron tune.

13.2 Space Charge and Mode Coupling

It was reported in a recent paper of Blaskiewicz [4] that the space charge tune shift can

strongly damp the transverse mode-coupling instability (TMCI), which is also known as

strong head-tail instability. The investigation was made on the basis of particle tracking

and the analytically solvable square-well air-bag model [5]. This is di�erent from the

air-bag model we used in the last section, although all the beam particles reside at the

edge of the bunch. The formation of this model is sketched in Fig. 13.2. From a ring of

particles in the longitudinal phase space on the left, the top semi-circle is stretched out

and so is the lower semi-circle as illustrated in the right plot. The stretching continues

until the top and lower semi-circles become two horizontal lines at energy o�set �d�E.
The lower one is described by the synchrotron phase � from �� to 0, while the upper

one by � from 0 to � for one synchrotron oscillation. Such a synchrotron oscillation

requires, of course, a special rf potential. The bunch will be very long. The head is

represented by � = 0 while the tail is represented by � = ��. We use the synchrotron

phase � and the energy o�set �E as a set of variables for the description of the particle

position in the longitudinal phase space. Although z remains the coordinate orthogonal

to �E, the linear position of the particle can also be referenced by �. The bunch particle

distribution is given by

 (�;�E) = 1
2
�(�)

h
Æ(�E �d�E) + Æ(�E +d�E)i ; (13.10)
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Figure 13.2: The ordinary air-bag model in the longitudinal phase space (left) is

transformed into the square-well air-bag model (right) by stretching out the upper

and lower semi circles until they become two in�nite parallel lines at the energy

spread �d�E. The longitudinal position of the particle remains speci�ed by � from

�� to 0 and from 0 to �.

where �(�) = 1=(2�) is the projection onto the synchrotron phase.

What is going to be presented here is a qualitative explanation why the space charge

helps TMCI. Without space charge, the bunch starts to be unstable when two neighbor-

ing synchro-betatron modes merge under the in
uence of the wake forces. Typically, the

pure betatron mode (the azimuthal or synchrotron harmonic m = 0 mode, also known

as the rigid-bunch mode) is a�ected by the wake force and shifts downward, while the

other azimuthal modes are not much a�ected, at least at low intensity. The transverse

wake force produced by an o�-axis beam has the polarity that de
ects the beam further

away from the pipe axis. This force acts as a defocusing force for the rigid beam mode,

and therefore the frequency shifts downward. As a result, the instability threshold is

determined by the coupling of the 0 and �1 modes, as illustrated in the left plot of

Fig. 13.3, (see below for de�nition of parameters).

The space charge by itself also shifts all the frequencies downward, as illustrated

in the right plot of Fig. 13.3. The only exception is the azimuthal m = 0 mode, which

describes the motion of the bunch as a whole, and, therefore, is not in
uenced by the

space charge at all. Thus, in the presence of space charge, the m = 0 mode will couple

with the m = �1 mode at a higher current intensity and therefore the threshold is raised
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Figure 13.3: Left: The transverse wake force shifts mostly the azimuthal m = 0

mode downward but not the other modes. Instability occurs when the m = 0 and

�1 modes meet with each other. Right: The space charge force in the absence of

the wake forces shifts all modes downward with the exception of the m = 0 mode.

in the presence of space charge. This is illustrated in the left plot of Fig. 13.4.

Let us go in more details with mathematics. The transverse displacement x(�) of a

particle at the synchrotron phase � satis�es the equation of motion:

d2x(�)

dt2
+ !2

�x(�) = F (�) + S�(�)[x(�)� �x(�)] ; (13.11)

where !�=(2�) is the unperturbed betatron frequency and the smooth approximation

for the betatron oscillations has been applied. To incorporate synchrotron oscillation,

the total time derivative takes the form

d

dt
=

@

@t
+ !s

@

@�
; (13.12)

with !s=(2�) being the synchrotron frequency. The right-hand side of Eq. (13.11) con-

tains the transverse driving forces. The �rst term is the transverse wake force

F (�) = �Nbe
2c2

E0C

Z j�j

0

W1[z(�
0)� z(�)]�(�0)�x(�0)d�0 ; (13.13)

where Nb is the number of particles in the bunch, W1 the transverse wake function, z(�)

the longitudinal position of the beam particle. The second term is the space charge

contribution. It is proportional to the linear density �(�) and the displacement relative
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Figure 13.4: Left: With the transverse space charge force added to the wake forces,

all modes except the m = 0 mode are shifted downward, thus requiring the m = 0

and �1 modes to couple at a much higher current threshold. Right: When space

charge reaches the critical value of � = 5, the m = �1 mode is shifted away from

the m = 0 mode by so much that they do not couple anymore.

to the local beam center, x(�)� �x(�), with the constant S representing the space charge

strength.

To solve the problem quantitatively, we expand the o�set into the synchrotron

harmonics (or azimuthals):

x(�; t) = e�i!�t�i
t
1X

n=�1

xne
in� ; (13.14)

where 
=(2�) is the collective frequency shift. In this air-bag model, all particles reside

at the edge of the bunch distribution in the longitudinal phase space. Note that because

of the square-well air-bag model, these synchrotron azimuthals are slightly di�erent from

the conventional ones. The average o�set at the synchrotron phase � is therefore given

by

�x(�; t) = 1
2

h
x(�; t) + x(��; t)

i
= e�i!�t�i
t

1X
n=�1

xn cos n� : (13.15)

Following basically Ref. [6], Eq. (13.11) transforms into an eigenvalue equation,�



!s
� n

�
xn = �K

1X
m=�1

xm
�Wnm + �Qnm

�
: (13.16)
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Here, the current parameter is written as

K =
Nbe

2c2W0

2�2!�!sCE0

: (13.17)

The wake matrix elements are then given by

Wnm =

Z �

0

d�

Z �

0

d�0w[z(�0)� z(�)] cos(n�) cos(m�0) ; (13.18)

where the wake function is presented as W (z) = �W0w(z) with W0 serving as a nor-

malizing constant. The space charge parameter

� =
�!�

2K!s
(13.19)

is a current-dependent ratio of the incoherent tune shift

�!� =
S�

2!�

(13.20)

to the current parameter K. The space charge matrix elements are

Qnm = Ænm � Æn;�m (13.21)

in the assumed air-bag distribution.

Without wake forces, the eigenvalue equation leads to the mode behavior presented

in the right plot of Fig. 13.3. For the simplest step-like wake function w(z) = H(z),

H(z) being the Heaviside step function, and without space charge (� = 0), the mode

coupling is shown in the left plot of Fig. 13.3, where the threshold is K = 0:73. Now

space charge is introduced with the space charge parameter � = 4. We do see in the

left plot of Fig. 13.4 that, because the m = �1 mode is shifted downward by the space

charge, the instability threshold has been pushed up to K = 1:25 as compared with the

left plot of Fig. 13.3.

Further increasing the space charge parameter to � = 5, we see in the right plot

of Fig. 13.4 that modes m = 0 and �1 do not merge any more. What is not shown

in the plot is a much higher new threshold where the 0 mode couples with the m = 1

mode instead. This new threshold is very much model dependent. In the present model,

it depends strongly on the number of modes included in the truncated matrix. For

truncation at modes jnj = 32, this new threshold is at least a factor of 30 higher than
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when space charge is absent. A dependence of the calculated threshold Kth on the mode

truncation number jnj was found as Kth / jnj1=2 for jnj � 10 and even weaker,

Kth / jnj1=3 ; (13.22)

for 10 � jnj � 32. The divergence is caused by the fact that the Fourier components of

the space charge in Eq. (13.21) do not roll o� at high frequencies. Taking into account

the �nite value of the ratio of transverse bunch size �? to longitudinal bunch size �k,

we estimate this roll-o� limit as jnj ' �?=�k ' 200 to 1000 for typical hadron bunches.

Extrapolation of the dependence Eq. (13.22) into this area brings to a conclusion that

the actual threshold can be 2 to 3 times higher than the result reported for jnj = 32.

So for this simpli�ed wake-beam model, the space charge is found to be able to increase

the TMCI threshold by one or two orders of magnitude.

As discussed in the previous section, a reactive feedback shifts modem = 0 upwards

resulting in pushing the threshold to a higher current. Here, the space charge force shifts

all the modes downwards except m = 0, and the result is also to have the threshold

pushed towards a higher current. Therefore, the space charge tune shift in a proton

machine, as discussed above, constitutes a natural inverse reactive feedback.

13.3 Longitudinal

The azimuthal modes are not a good description of the collective motion of the bunch

when the beam current is high enough. Therefore there is also mode coupling in the

longitudinal motion. Similar to the transverse coupled problem in Eqs. (13.1) and (13.2),

we have here

(
�m!s)Æmm0Ækk0 =Mmm0kk0 (13.23)

where, with the aid of Eq. (10.37), the matrix M is de�ned as

Mmm0kk0 =
im

1+m

4�2eIb�

3�2E0!s� 3L

Z
d!
Z
k
0(!)

!
~�m0k0(!)~��mk(!)Z

d!~�mk(!)~�
�
mk(!)

; (13.24)

where the unperturbed distribution has been assumed to be parabolic. Again here the

impedance is broadband so that the discrete summations over the synchrotron sidebands
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have been replaced by integrals. We have also thrown away all the higher-order radial

modes keeping the most easily excited k = 1. Exactly the same as in the transverse

situation, only ImZ
k
0 (!)=! contributes to the diagonal elements of the coupling matrix

and thus to the real frequency shifts of the modes. The coupling of two modes, mostly

adjacent, will give instability, which is determined by Re Zk
0(!)=! in the o�-diagonal

elements next to the diagonal ones. All the discussions about bunch-length dependency

on threshold in the transverse case apply here also. A rough estimate of the threshold

can be obtained from Eq. (13.24) by equating the frequency shift to !s. The threshold

is therefore

�2 =
4�2eIb�

3�2E0!2
s�

3
L

Zk
0

!

�����
e�

� 1 ; (13.25)

where the e�ective longitudinal impedance for mode m is de�ned as

Z
k
0

!

�����
e�

=

Z
d!
Z
k
0(!)

!
hm(!)Z

d!hm(!)
; (13.26)

For convenience, let us introduce a parameter x = !�L=�, so that, with the exception

of m = 0 which is not an allowed mode in the longitudinal motion, the mth mode of

excitation peaks at x � m+1 and has a half width of �x � 1. Now consider the Fermilab

Main Ring with a revolution frequency 47.7 kHz and total bunch length �L � 2 ns.

Assume the impedance to be broadband centered at xr = 7:5 or fr � 1:88 GHz and

quality factor Q = 1. Numerical diagonalization of the coupling matrix gives frequency

shifts as shown in Fig. 13.5 [8]. We see the �rst instability occurs when mode m = 6

couples with mode m = 7, and in the vicinity of the threshold, there are also couplings

between modes m = 4 and 5 and modes m = 8 and 9. This happens because the

resonance centered at xr = 7:5 has a half width �xr = xr=(2Q) = 3:75. Thus the

Re Zk
0=! resonant peak encompasses modes m = 4 to 9, which peak at x = 5 to 10. This

is a typical picture of mode-coupling instability for long bunches. From the �gure, the

�rst instability occurs at

� =
4�2eIb�

3�2E0!2
s�

3
L

Rs

!r
� 0:93 : (13.27)

On the other hand, the Keil-Schnell criterion of Eq. (6.22) gives a threshold of

eIb�

�2E0!2
s�

3
L

Rs

!r

=
1

6�

1

F
; (13.28)
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� =
4�2eIb�

3�2E0!2
s�

3
L

Rs

!r

Figure 13.5: Coupling of modes m = 6 and 7 in the presence of a resonance at

xr = 7:5 and Q = 1 above transition.

where F is the form factor. This is equivalent to

� =
2�

9

1

F
: (13.29)

Thus, the mode-coupling threshold is very close to the Keil-Schnell threshold. However,

mode-coupling instability is quite di�erent from microwave instability. In the latter, pure

reactive impedance can drive an instability; for example, the negative-mass instability

just above transition is driven by the space charge force. It can be demonstrated that

pure capacitive impedance will only lead to real frequency shifts of the modes. Although

two modes may cross each other, they will not be degenerate to form complex modes.

Thus, there is no instability (Exercise 13.2).

When the bunch is short, for example, electron bunches, the modes of excitation

spread out to higher frequencies. Therefore when the bunch is short enough, the resonant

peak of Re Zk
0=! will encompass only modes m = 1 and 2. Thus, we expect these two
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modes will collide �rst to give instability. Them = 1 is the dipole mode and is not shifted

at low beam current because the bunch center does not see any reactive impedance.

The m = 2 is the quadrupole mode, which is shifted downward above transition. This

downshift is a way to measure the reactive impedance of the ring.

When the beam current is above threshold and instability starts, the energy spread

increases and so does the bunch length. In an electron ring where there is radiation

damping, there is no overshooting and the increase stops when the stability criterion is

ful�lled again. The bunch lengthening is therefore determined by the stability criterion.

If the bunch samples the impedance at a frequency range where Z
k
0(!) / !a, the e�ective

impedance is

Z
k
0

!

�����
e�

/

Z
d! !a�1hm(!)Z
d! hm(!)

/ � 1�a
L

; (13.30)

where use has been made of the fact that the power spectrum hm is a function of the

dimensionless quantity !�L according to Eq. (10.42) and the result is independent of the

functional form of hm. From the threshold condition in Eq. (13.25), we have

4�2eIb�

3�2E0!2
s�

2+a
L

= constant independent of Ib; �; E0; !s; �L : (13.31)

Thus the bunch length obeys the scaling criterion of

�L / �1=(2+a) ; (13.32)

where

� =
�Ib
�2sE0

(13.33)

is the scaling parameter introduced by Chao and Gareyte [2].

Longitudinal mode coupling is di�erent from transverse mode coupling. In the

latter, the betatron frequency (m = 0) is shifted downward to meet with the m = �1
mode. The amount of shift is small, since �s=[��] � 1, where [��] is the residual

betatron tune. Transverse mode coupling has been measured in many electron rings

and the results agree with theory. In the longitudinal case, the synchrotron quadrupole

frequency (m = 2) has to be shifted downward to meet with the synchrotron dipole

frequency (m = 1) and this shift is 100% of the synchrotron tune. At the CERN LEP

which is above transition, we expect the synchrotron quadrupole mode to shift downward
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when the beam current increases from zero. However, it was observed that this mode

shifts slightly upward instead. Since the dipole frequency is not shifted, it is hard to

visualize how the two modes will be coupled. Some argue that the coupling may not

be between two azimuthal modes, but instead between two radial modes that we have

discarded in our discussion. But the coupling between two radial modes is generally

much weaker. Some say that the actual coupling of the two modes has never been

observed experimentally, and the scaling law for bunch lengthening may have been the

result of some other theories. Anyway, the theory of longitudinal mode coupling is far

from satisfactory.

13.4 High Energy Accelerators

So far transverse mode-coupling instability has never been observed in hadron machines.

In this section, we would like to analyze how this instability would a�ect the higher

energy accelerators under design.

For protons, particle energy E0 is directly proportional to the size of the accelerator.

So we have

E0 / R and !0 / 1

R
: (13.34)

The resistive-wall impedance is

Zk
0

n
= [1� i sgn(!)]

R�

nb

r
�!

2�
; (13.35)

where � is the resistivity and � the magnetic permeability of the beam pipe of radius b.

At a �xed frequency !, we have

Z
k
0

n
� 1

b
p
!
; (13.36)

Z?
1 �

R

b3
p
!
: (13.37)

For M pairs of strip-line BPM's at low frequencies ! . c=`, where ` is the length of the
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strip lines,

ImZ
k
0

n
= �i2MZc

�
�0
2�

�2
`

R
; (13.38)

ImZ?
1 =

c

2b2

�
4

�0

�2

sin2
�0
2

ImZ
k
0

!
: (13.39)

where Zc is the characteristic impedance and �0=� is the fraction of the beam pipe

covered by the strip lines. The betatron functions �x;y scale as
p
R. Thus, the betatron

tunes and the number of BPM's required also scale as
p
R. At a �xed frequency we have

ImZ
k
0

n
� `p

R
; (13.40)

ImZ?
1 �

`

b2

p
R : (13.41)

We see that when the size of an accelerator is increased, the resistive-wall impedance

will dominate over all other contributions. We also see that Z
k
0=n at a �xed frequency

remains roughly independent of the size of the accelerator. From now on, we will consider

resistive-wall impedance only.

The Keil-Schnell criterion for longitudinal microwave instability is�����Z
k
0

n

����� < 2�j�jE0�
2
Æ

eIpeak
: (13.42)

For a large accelerator, the energy is usually very much larger than the transition energy.

The slip factor � � 
�2t � ��2� for a FODO lattice. We therefore have � � R�1. The

peak current is Ipeak � Nb=�� . Putting in the wall resistivity at ! � ��1� , the stability

criterion takes the form p
��
b
.
A�Æ
NbR

; (13.43)

where the bunch area in eV-s is

A = E0�Æ�� : (13.44)

For an accelerator of higher energy, if we want to have roughly the same fractional energy

spread and bunch length, the bunch area will scale as R. The above stability criterion

becomes p
��
b
.
���

2
Æ

Nb
: (13.45)
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This leads to the conclusion that longitudinal microwave instability will not be worsen

for higher energy accelerators.

Now let us turn to transverse mode-coupling instability and consider Eq. (13.7),

which we rewrite as a stability criterion

Z?
1

��
e�
.

4�E0!0���s�L
e2Nbc

: (13.46)

The e�ective impedance on the left side will be taken as the resistive-wall impedance

of Eq. (13.37) multiplied by a constant. When we substitute E0 � R, !0 � 1=R, and

�� �
p
R, we obtain

R
p
��

b3
.

p
R�s��
Nb

: (13.47)

Thus, transverse mode-coupling instability will occur when the size of the accelerator

becomes bigger and bigger.

According to all the accelerator rings ever built, for electron machines, particle

energy scales as E0 �
p
R instead. This implies that there will be no

p
R on the right

side of Eq. (13.47), or
R
p
��

b3
.
�s��
Nb

; (13.48)

and the instability will come at a smaller accelerator size. This may explain why elec-

tron machines are more susceptible for transverse mode-coupling instabilities. For the

longitudinal microwave instability, Eq. (13.45) becomes

p
��
b
.

���
2
Æ

Nb

p
R
; (13.49)

showing that this instability will be worsen as the size of the ring increases. For electron

rings, because of the short bunch length, the longitudinal mode-coupling instability is

more of interest. The stability condition for azimuthal modes m = 2 and 1 colliding is

given by Eq. (7.10), or �����Z
k
0

n

�����
ind

.
4��2s!

2
0 �̂

3�2E0

3e2N j�j : (13.50)

Assuming again that the resistive-wall impedance dominates, we obtain

��
b
.

�2s�
3
�

NbR1=2
; (13.51)
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again showing that this threshold becomes more severe for a larger ring.

In Chapter 10, we show that for a proton ring, the growth rate for transverse

coupled-bunch instability driven by the resistive-wall impedance should be more or less

independent of the size of the accelerator ring. However, for electron rings we have

E0 /
p
R instead. The growth rate for this instability now increases according to

p
R for

large electron rings. The growth time in revolution turns therefore decreases according

to R�3=2, making it much harder for the feedback damper to damp the instability in

Very Large Lepton Colliders (VLLC) than in Very Large Hadron Colliders (VLHC).
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13.5 Exercises

13.1. There is a simple two-particle model which gives a clear picture of transverse mode

coupling [2]. Assume the head and tail particles are always separated by ẑ for one

half of a synchrotron period Ts and exchange position for the other half. Similar

to Exercise 12.2, we have during 0 < s=v < Ts=2,

y001 + k2�y1 = 0 ;

y002 + k2�y2 = �
e2NW1(ẑ)

2E0C
y1 : (13.52)

(1) Show that the solution is

~y1(s) = ~y1(0)e
�ik�s ;

~y2(s) = ~y2(0)e
�ik�s � i

e2NW1(ẑ)

4E0Ck�

�
~y�1(0)

k�
sin(k�s) + ~y1(0) s e

�ik�s

�
; (13.53)

where

~y` = y` + i
y0`
k�
; ` = 1; 2 : (13.54)

The term with sin(k�s) in Eq. (13.53) can be dropped because !�Ts=2 � 1. We

can therefore write�
~y1
~y2

�
s=vTs=2

= e�i!�Ts=2
�

1 0

i� 1

��
~y1
~y2

�
s=0

; (13.55)

where

� = ��e
2NW1v

2

4E0C!�!s
: (13.56)

(2) During Ts=2 < s=v < Ts, show that we have instead

y001 + k2�y1 =
e2NW1(ẑ)

2E0C
y2 ;

y002 + k2�y2 = 0 ; (13.57)

so that for one synchrotron period,�
~y1
~y2

�
s=vTs

= e�i!�Ts
�
1 i�

0 1

��
1 0

i� 1

��
~y1
~y2

�
s=0

: (13.58)



13-20 13. MODE COUPLING

(3) Show that the two eigenvalues are

�� = e�i� ; sin
�

2
=

�

2
; (13.59)

and stability requires � � 2. Compare the result with Eq. (13.6). Note that for a

short bunch W1(ẑ) < 0; thus � is positive.

13.2. In the two-particle model in Exercise 13.1, if the beam current is slightly above

threshold; i.e.,

� = 2 + � ; (13.60)

where � � 1, compute the complex phase � of the eigenvalues ��. The growth

rate is then
1

�
=
Im�

Ts
=

2
p
�

Ts
: (13.61)

Show that for an intensity 10% above threshold, the growth time is of the order

of the synchrotron period.

13.3. For longitudinal mode coupling, the coupling matrix of Eq. (13.24) can be written

as, after keeping only the lowest radial modes,

Mmm0 = �!sAmm0 (13.62)

where � is given by Eq. (13.27),

Amm0 =
im

1+m

Z
d!
!rẐ

k
0(!)

!
~�m0(!)~��m(!)Z

d!~�m(!)~�
�
m(!)

; (13.63)

and Ẑ
k
0(!) has been normalized to the shunt impedance Rs.

If the coupling is not too strong, we can truncate the matrix to 2 � 2 for the

coupling between two modes:�������



!s0
�m� �Amm �Amm0

�Am0m



!s

�m0 � �Am0m0

������� = 0 : (13.64)

(1) Show that the collective frequency is given by


 = 1
2
!s

h
(�m + �m0)�

p
(�m0 � �m)2 + 4�2Amm0Am0m

i
; (13.65)
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where �k = k + �Akk, k = m or m0.

(2) For simplicity, let us neglect the factorm=(1+m) on the right side of Eq. (13.63).

For two adjacent modes (m0 = m + 1) that are coupled by a resonant peak, the

higher-frequency mode samples mostly the capacitive part of the resonance while

the lower-frequency mode samples the inductive part. Therefore Amm�Am0m0 > 0.

Show that Amm0Am0m = �jAmm0 j2 and the threshold of instability �th is given by

j�thAmm0 j = 1
2
j�th(Amm � Am0m0)� 1j : (13.66)

The solution is di�erent depending on whether the bunch energy is above or below

transition:

�th =
1

2jAmm0 j+ jAm0m0 � Ammj above transition; (13.67)

j�thj = 1

2jAmm0 j � jAm0m0 � Ammj below transition: (13.68)

The above shows that the threshold will be higher when the ring is below transition.

In fact, the system becomes completely stable below transition if the coupling

provided by the real part of the impedance is not strong enough (or 2jAmm0 j <
jAm0m0�Ammj). For this reason, it is advantageous for the ring to be of imaginary


t [9].

(3) When the impedance is purely reactive, the next-to-diagonal elements are

zero. So we talk about coupling of two modes m and m0 = m + 2 instead. Show

that Amm0Am0m = jAmm0 j2 and instability cannot occur.

(4) Show that the same conclusions in Parts (2) and (3) can be drawn when the

factor m=(1+m) is not neglected in Eq. (13.63), although Eqs. (13.66) and (13.68)

will be slightly modi�ed.
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