
Chapter 16

TRANSITION AND SPACE

CHARGE MISMATCH

The slippage factor has been de�ned as

� =
1


2
t

� 1


2
(16.1)

in earlier chapters, where E0 = 
Erest is the total energy of the synchronous particle

having rest energy Erest, and 
tErest is the transition energy of the lattice. As the particle

crosses transition through ramping, the slippage factor passes through zero and switches

sign from negative to positive. To maintain phase stability, it is also necessary for the

the synchronous phase �s to jump from 0 � �s <
1
2
� to 1

2
� < �s � �. The synchrotron

angular frequency is de�ned as

!s =

s
�eh�Vrf cos �s

2��2E0

!0 ; (16.2)

where Vrf is the rf voltage, h is the rf harmonic, � is the velocity of the synchronous

particle with respect to the velocity of light, and !0 is the revolution angular frequency.

Because of its dependency on �, the synchrotron frequency also slows down as transition

is approached. Thus, the motion of the particle cannot follow the rf bucket in the

longitudinal phase space when it is close to transition. Here, we �rst study the kinematics

as the bunch is ramped through transition, and then the space charge mismatch of the

bunch length below and above transition.
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16.1 Equations of Motion

Physically, � measures the amount of time or phase slippage of a bunch particle with

respect to the synchronous particle. Thus, for a particle with energy deviation �E, its

rf phase �� slips at a rate of�

d��

dt
=
h� !0

�2E0

�E : (16.3)

At the same time, this o�-energy particle receives additional energy from the rf cavities

at the rate of
d�E

dt
=
eVrf!0

2�
[ sin(�s +��)� sin�s] : (16.4)

Formerly, when we characterize the beam particle by � , its arrival time ahead of the

synchronous particle, the right side of d�=ds in Eq. (2.9) or (2.11) is preceded by a

negative sign, implying that the particle will arrive late (� < 0) above transition (� >

0) for a positive momentum o�set. Here, �� is the slip in rf phase relative to the

synchronous particle. When the particle arrives late at the cavity gap, the rf phase

will have evolved more than 2�h. Thus, the rf phase slip is positive and so is the sign

preceding the right side of Eq. (16.3). Eliminating �E, we obtain for small �� the

equation governing the motion of the phase of the particle:

d

dt

�
�2E0

h�!0

d��

dt

�
� eVrf cos�s!0

2�
�� = 0 : (16.5)

Unlike our previous discussion, �, E0, �, and !0 vary with time and should not be taken

out from the �rst derivative operator. This is especially true for � which appears in the

denominator. However, as an approximation, we can neglect the slow time variations of

all the parameters except �=E0. This leads to

d

dt

�
E0

�

d��

dt

�
�
�
heVrf cos�s!

2
0

2��2

�
�� = 0 : (16.6)

Under the approximation that the second bracketed term is considered time independent

and also the variation of �=E0 is linear in time near transition,y or

�

E0

=
2 _
t t


4
t
Erest

; (16.7)

�d��=dt is the rf phase slip in one revolution period of the synchronous particle, not the o�-energy

particle under consideration. Therefore, this is not equal to ��!=h where �! is the slip in angular

frequency of the particle. See Sec. 18.1 for detail
ySome authors assume � to be linear in t instead. In that case, one needs also the additional

assumption that _

t
Tc � 1.
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Eq. (16.6) can be solved exactly in terms of Bessel functions of fractional orders [3].

However, all the important features of the solution can be estimated easily without

going into the di�erential equation and Bessel functions [1]. Best of all, through the

estimation, one can have a clear picture of what is going on during transition. In

Eq. (16.7), the time t is measured from transition. Thus, t < 0 is below transition and

t > 0 is above. On the other hand, the subscript t implies evaluation of the respective

quantity at the moment when transition is crossed. Thus,

_
t =
eVrf!0

2�Erest

sin�s (16.8)

is the rate at which 
 is ramped right at transition.

We can also rewrite Eq. (16.6) in the form

d

dt

�
1

!2
s

d��

dt

�
+�� = 0 ; (16.9)

where !s is given by Eq. (16.2). However, Eq. (16.2) should be considered as a de�nition

of !s only. This is because the beam particle does not follow the invariant trajectory

of the Hamiltonian when it is near transition and therefore does not make synchrotron

oscillations, so that !s, as de�ned by Eq. (16.2), loses its meaning of frequency.

16.2 Nonadiabatic Time

When ��1 is not changing rapidly, a bucket can be de�ned. The bucket height is given

by

(�E)
bucket

/
�
E0

j�j
�1=2

: (16.10)

However, as the bunch particle passes through transition, ��1 changes rapidly. Here, we

follow the assumption of a linear time variation for �=E0 as given by Eq. (16.7), while all

other parameters such as the rf voltage and the synchronous phase, aside from 
ipping

from �s to � � �s, are held �xed near transition. This means that when transition is

approached, synchrotron frequency slows down to zero and the bucket height increases

to in�nity. In other words, when it is close enough to transition, the particle will not be

able to catch up with the rapid changing of the bucket shape. This time period, from



16-4 16. TRANSITION AND SPACE CHARGE MISMATCH

t = �Tc to t = Tc is called the nonadiabatic region, and Tc the nonadiabatic time. Here,

we de�ne this region by

!s � 2

(�E)
bucket

d(�E)
bucket

dt
: (16.11)

This just implies that inside this region, the rate at which the bucket height is changing

is faster than the rate of executing synchrotron oscillations. The right side is

2

(�E)
bucket

d(�E)
bucket

dt

����
t=�Tc

= 2
d

dt

r
Tc
�t

�����
t=�Tc

=

s
Tc

(�t)3

�����
t=�Tc

=
1

Tc
: (16.12)

Evaluating at t = �Tc, the left side of Eq. (16.11) is

!sjt=�Tc =
s
h _
tTceVrf cos �s

�
4tErest

!1 ; (16.13)

where !1 = !0=� and is time independent. We then obtain the nonadiabatic time from

Eq. (16.11):

Tc =

��
�t


4
t

2!1h

�� j tan�sj
_
2
t

��1=3
; (16.14)

where the expression of _
t in Eq. (16.8) has been used. Note that the nonadiabatic time

is just an approximate time. The factor 2 on the right side of Eq. (16.11) was inserted for

the purpose that Tc given by Eq. (16.14) is exactly the same as the adiabatic time quoted

in the literature. We have written Eq. (16.14) in such a way that the factor in the �rst

brackets contains parameters of the lattice, while _
t in the second brackets is determined

by the ramp curve and �s, the synchronous phase at transition, is determined by the

rf-voltage table.

16.3 Bunch Shape at Transition

For the sake of simplicity, we adopt a model which states that,

(1) when jtj > Tc, the beam particles follow the bucket with synchrotron oscillations,

and

(2) when jtj < Tc, the beam particles make no synchrotron oscillations at all.
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At t = �Tc, the beam particle still follows the bucket. Therefore, From Eq. (16.3),

the bunch length �� is related to the rms energy spread �
E
by

�s�� =
hj�j

�2
t 
tErest

�
E
; (16.15)

where � is to be evaluated at t = �Tc, and the energy E0 is evaluated approximately

right at transition since the change is slow. The 95% bunch area is de�ned as

S = 6����E ; (16.16)

where this expression should hold in the adiabatic region. From Eqs. (16.15) and (16.16),

we obtain the rms bunch length in time �� = h!0�� as

�� =

�
Sj�j

6��s!0�2
t 
tErest

�1=2
: (16.17)

Substituting �(�Tc) from Eq. (16.7) and !s(�Tc) from Eqs. (16.11) and (16.12), we

arrive at

�� =
1p
3�

�
ST 2

c _
t
�2
t 


4
t
Erest

�1=2
: (16.18)

Our simple model requires no synchrotron oscillation inside the nonadiabatic region.

This is equivalent to having � = 0 in Eq. (16.3); or the phase of each particle will not

change at all. Therefore, Eq. (16.18) is also the bunch length right at transition, where

the exact expression from solving the di�erential equation is

�� =
2

35=6�(1
3
)

�
ST 2

c _
t
�2
t 


4
t
Erest

�1=2
: (16.19)

This just amounts to the replacement of 1=
p
3� = 0:326 by 2=[35=6�(1

3
)] = 0:300, where

�(1
3
) = 2:678939 is the Gamma function. Our estimate is about 8.8% too large because

our simple model does not allow the bunch to continue to shrink in the nonadiabatic

region.

On the other hand, without synchrotron oscillations, the energy of each beam parti-

cle is accelerated by the focusing rf force according to Eq. (16.4). From t = �Tc to t = 0,

a particle at a phase o�set �� from the synchronous particle will acquire an energy

�E = TcErest

d _


d��
�� ; (16.20)
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where, according to Eq. (16.4),
d _


d��
� _
t

tan�s
; (16.21)

and the small phase-o�set approximation has been made. At t = �Tc, when there are

still synchrotron oscillations in our simple model, if we write the phase o�set as

�� = c�� cos!st ; (16.22)

according to the phase-drift equation, the energy spread of the particle is

�E = ��s�
2
t 
tErest

h�
c�� sin!st = ��s�2

t 
tErest

h�

qc��2 � (��)2 ; (16.23)

where c�� =
p
6��h!0 is the half width of the bunch at t = �Tc as given by Eq. (16.18).

When evaluated at t = �Tc, it is found that the coeÆcient of Eq. (16.23) is equal to

that of Eq. (16.20), and we denote it by

a = ��s�
2
t 
tErest

h�
= TcErest

d _


d��
: (16.24)

Therefore, the total energy spread at transition is given by

(�E)
total

= a

�qc��2 � (��)2 +��

�
: (16.25)

The maximum total energy spread comes out to be

(�E)
total;max

=
1p
�

�
S�2

t 

4
t
Erest

T 2
c _
t

�1=2
(16.26)

at �� = 2�1=2c��. The exact value from the solution of a di�erential equation is

(�E)max =
�(1

3
)

31=621=2�

�
S�2

t 

4
t
Erest

T 2
c _
t

�1=2
; (16.27)

or just a replacement of 1=
p
� = 0:564 by �(1

3
)=(31=621=2�) = 0:502. By the same token,

the particle at the tail of the bunch will be decelerated by the same energy. Particles in

between will be accelerated accordingly. The bunch shape at transition is therefore given

by Fig. 1, which is slanted at an angle from the �E-axis. Our estimate of (�E)total is

about 11% too large. This is to be expected because we allow pure increment in energy
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by the focusing rf potential in the nonadiabatic region without any motion in the phase

direction.

As we recall, the maximum energy spread at transition is not derived via Eq. (16.16)

and one should not expect Eq. (16.16) to hold in the nonadiabatic region. Here, we derive

another expression for the bunch area right at transition. Using Eqs. (16.18) and (16.26)

and the fact that the maximum half bunch length is �̂ =
p
6�� , we obtain the bunch

area

S =
1p
2
��̂d�E (16.28)

If the exact solutions in Eqs. (16.19) and (16.30) are used, one gets instead

S =

p
3

2
��̂d�E ; (16.29)

or the replacement of 1=
p
2 = 0:707 by

p
3=2 = 0:866. Notice that so far we are still

within a Hamiltonian system, the bunch area should be conserved. The fact that the

bunch area is now less than ��̂d�E indicates that the bunch ellipse has been tilted, as

illustrated in Fig. 16.1. This is because phase motion in the nonadiabatic region has

almost (totally in our simpli�ed model) been frozen and the energy change has been

uneven along the bunch. This problem will be studied again in the next section.

To conclude this section, let us write the rms time spread and rms energy spread

at transition as well as the nonadiabatic time in terms of the parameters that we can

control, namely, the synchronous phase �s and ramping rate _
t (Exercise 16.1):

�� / tan
1

3 �s

_

1

6

t

; �
E
/ _


1

6

t

tan
1

3 �s
; Tc / tan

1

3 �s

_

2

3

t

: (16.30)

16.4 More Sophisticated Approximation

16.4.1 Adiabatic Region

We now discard the simple model in the previous section and come back to Eq. (16.9),

the equation governing motion of small phase o�set. Instead of solving the di�erential
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Figure 16.1: The evolution of the bunch, according to the simple model, from

t = �Tc (dashes) to the time when transition is crossed (solid). In the exact solution

of the di�erential equation, there is an additional shrinkage in the phase spread of

the ellipse. Point A indicates that when the phase o�set is at a maximum, the

energy o�set is not at a maximum.

equation exactly, we are looking into approximates instead. In the adiabatic region that

is not too far away from transition, the particle is performing synchrotron oscillations

with a slowly changing frequency !s=2� given by Eq. (16.2). The solution of Eq. (16.9)

is therefore of the form

�� = Aei
R
!sdt ; (16.31)

where the amplitude A is also slowly changing with time. We then have

d

dt

�
1

!2
s

d��

dt

�
= ��� +

" 
2i _A

!s
� iA _!s

!2
s

!
+

 
�A

!2
s

� 2 _A _!s
!3

!#
ei

R
!sdt : (16.32)

Since �� varies much faster than A and !s, we can neglect �A, �!s, and _A _!s, and set

2 _A

!s
=
A _!s
!2
s

; (16.33)
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so that Eq. (16.9) is satis�ed. The relation in Eq. (16.33) leads to

A2

!s
= constant ; (16.34)

implying that the solution of Eq. (16.9) or the rf phase of a beam particle in the adiabatic

region can be written as

�� = B
p
!s e

i
R
!sdt ; (16.35)

with B being constant.

The dropping of the slowly varying terms from Eq. (16.32) is equivalent to assuming

�A

!2
s

� A _!s
!2
s

; (16.36)

2 _A _!s
!3
s

� A _!s
!2
s

: (16.37)

Again, with the assumption of constant rf voltage Vrf, constant synchronous phase �s,

and linear time variation of �=E0, we can write, using Eqs. (16.2), (16.7), and (16.8),

!2
s(t) = bjtj with b =

_
theVrf j cos�sj!2
1

�
4
t
Erest

: (16.38)

Then, together with Eq. (16.34), it is easy to show that (Exercise 16.2),

Eq: (4:6) =) jtj �
�
3

8

�2=3 �
1

b

�1=3
; (16.39)

Eq: (4:7) =) jtj �
�
1

2

�2=3 �
1

b

�1=3
: (16.40)

In other words, the adiabatic solution is only valid if Eqs. (16.39) and (16.40) hold. A

nonadiabatic time Tc can therefore be de�ned by letting

Tc =

�
1

b

�1=3
; (16.41)

which turns out to be exactly the same expression as our former de�nition in Eq. (16.12).

Here, we arrive at a neat way to remember the nonadiabatic time:

!2
s =

jtj
T 3
c

or !sjt=�Tc =
1

Tc
: (16.42)
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Now, let us continue the study of the bunch shape in the adiabatic region. Di�er-

entiating Eq. (16.35) and using Eq. (16.34), we get

d��

dt
= iB!3=2

s

"
1� i

4

�
Tc
jtj
�3=2#

ei
R
!sdt ; (16.43)

or

d��

dt
= i!s��

"
1 +

1

16

�
Tc
jtj
�3#1=2

e�i' ; (16.44)

with

' = tan�1
1

4

�
Tc
jtj
�3=2

: (16.45)

Then, using Eq. (16.3), we arrive at the energy o�set of the particle

�E = i!s��
�2
Erest

j�jh!0

"
1 +

1

16

�
Tc
jtj
�3#1=2

e�i' : (16.46)

We see from Eq. (16.35) that, as the bunch is approaching the nonadiabatic region,

its width shrinks in the same way as the decrease of
p
!s. On the other hand, from

Eq. (16.46), the height of the bunch increases because of the square root term and the

t�1=4 dependency in the front factor. We also see that there is a phase advance ' of

the energy o�set, or a tilt in the bunch shape in the longitudinal phase space. This

tells us that there is already slowing down in the phase motion in the adiabatic region

when transition is approached. This reminds us again that there is no clearcut boundary

between the adiabatic and nonadiabatic regions.

The next task is to relate the constant B to the bunch area. The motion of the

particle described by Eqs. (16.35) and (16.46) is of the form

�� = c�� cos � ; �E = d�E sin('� �) ; (16.47)

which map out a tilted ellipse of area

S = �
c��
h!0

d�E cos' ; (16.48)

inscribed inside the rectangle of half-width c��=(h!0) and half-height d�E, and this is

the bunch area in eV-s.



16.4 More Sophisticated Approximation 16-11

The half bunch length in the adiabatic region can be read o� from Eq. (16.35):

c�� = B!1=2
s : (16.49)

Substituting into Eq. (16.46), we obtain the half energy spread

d�E =
�2
Erest

j�jh!0

!3=2
s

"
1 +

1

16

�
Tc
jtj
�3
#1=2

: (16.50)

where the last square bracket term is just sec', as given by Eq. (16.45). When they are

substituted in the bunch area in Eq. (16.48), the constant B will be determined,

S =
B2eVrf j cos�sj

2h
; (16.51)

which is time independent as anticipated.

Using the linear time dependency of !2
s from Eq. (16.42) and replacing the constant

B with Eq. (16.51), we obtain the time dependency of the half bunch length,

c�� =

�
2hS

eVrfj cos�sjTc

�1=2 � jtj
Tc

�1=4

; (16.52)

and also

d�E =
!0

�

�
hSeVrf j cos�sjTc

2

�1=2�Tc
jtj
�1=4

"
1 +

1

16

�
Tc
jtj
�3
#1=2

: (16.53)

Through the de�nition of the nonadiabatic time, the half bunch length and half energy

spread can be written in the form that resembles the expressions in Eqs. (16.19) and

(16.27):

c�� = h!0

�
2ST 2

c _
t
��2

t 

4
t
Erest

�1=2 � jtj
Tc

�1=4

; (16.54)

and also the

d�E =

�
S�2

t 

4
t
Erest

2�T 2
c _
t

�1=2 �
Tc
jtj
�1=4

"
1 +

1

16

�
Tc
jtj
�3
#1=2

: (16.55)
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16.4.2 Nonadiabatic Region

We can also study the nonadiabatic region of the Eq. (16.14), which can be transformed

to
d

dx

�
1

jxj
d��

dx

�
+�� = 0 ; (16.56)

where x = t=Tc and use has been made of Eq. (16.38). However, we �nd it easier to

solve instead the di�erential equation governing energy o�set, which reads

d2�E

dx2
+ jxj�E = 0 : (16.57)

We would like to introduce a normalized energy-o�set

�p(x) =
2�

!0eVrf cos�sTc
�E(x) =

tan�s
_
tErestTc

�E(x) ; (16.58)

so that �p(x) will have the same dimension as ��, the energy equation of motion

becomes the simple relation

�� = � sgn(x)
d�p

dx
: (16.59)

For the sake of convenience, we concentrate on the situation above transition only when

x � 0 so that the absolute-value sign can be dropped and sgn(x) can be ignored. At the

end, we can replace x by jxj everywhere in the solution so that it applies to both above

and below transition. Note that both cos�s and tan�s are now negative.

To seek a solution within the nonadiabatic region where jxj < 1, it is natural to

resort to power series:

�p =
1X
n=0

anx
n+k ; (16.60)

where k is to be determined. Substitution into of Eq. (16.57) leads to

1X
n=�3

an+3(n+ k + 3)(n+ k + 2)xn+k+1 +
1X
n=0

anx
n+k+1 = 0 : (16.61)

The indicial equations determine that k = 0 and a2 = 0. The solution can be written as

�p =

�
a0 + a3x

3 + a6x
6 + � � �

�
+

�
a1x + a4x

4 + a7x
7 + � � �

�
; (16.62)
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where the coeÆcients are related by the recurrence relation

an+3 = � an
(n + 3)(n+ 2)

: (16.63)

Thus, there are two free constants a0 and a1, which are to be expected from a second-

order di�erential equation. It is more convenient to rewrite Eq. (16.62) as

�p = a0

�
1 + a03x

3 + a06x
6 + � � �

�
+ a1

�
x+ a04x

4 + a07x
7 + � � �

�
; (16.64)

where we have rede�ned the coeÆcients as a0n = an=a0 for n = 3; 6; 9; � � � , and a0n = an=a1
for n = 4; 7; 8; � � � . They can be readily computed from the recurrence relation:8>><>>:

a03 = �
1

(3:2)
; a06 = +

1

(6:5)(3:2)
; a09 = �

1

(9:8)(6:5)(3:2)
; � � � ;

a04 = �
1

(4:3)
; a07 = +

1

(7:6)(4:3)
; a010 = �

1

(10:9)(7:6)(4:3)
; � � � ;

(16.65)

where the periods or dots in above denote multiplication. The phase o�set can now be

obtained using Eq. (16.59):

�� = �a0
�
3a03x

2 + 6a06x
5 + � � �

�
� a1

�
1 + 4a04x

3 + 7a07x
6 + � � �

�
: (16.66)

Now we are going to derive the trajectory of a particle which is at its maximum

phase o�set right at transition. Thus we obtain

�a1 = c��0 = 23=2h!0

31=3�(1
3
)

�
ST 2

c _
t
�2
t 


4
t
Erest

�1=2
; (16.67)

with the aid of Eq. (16.19), where an extra subscript \0" has been added to denote

\right at transition" or x = 0 for the sake of clarity. This position of the beam particle

corresponds to Point A in Fig. 16.1, where the energy o�set is not at its maximum, but

is related to it by

�E = d�E0 sin' ; (16.68)

where ' is the tilde angle referenced in Eq. (16.47), and it modi�es the expression of

bunch area to S = �b�0d�E0 cos'. However, from Eq. (16.29), the angle is found to be

cos' =
p
3=2. We therefore have

a0 =
1

2
c�p0 = 1

2

j tan�sj
_
tErestTc

d�E0 =
1

2

31=6�2(1
3
)

2�
c��0 ; (16.69)
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where Eqs. (16.19) and (16.27) have been used, and obtain the relation

a1
a0

= �2c��0c�p0 =
4�

31=6�2(1
3
)
: (16.70)

The trajectory of the beam particle is governed by

�p(x) = c��0 ��x �1 + a04x
3 + a07x

6 + � � � �� a0
a1

�
1 + a03x

3 + a06x
6 + � � � �� ; (16.71)

��(x) = c��0 ��1+4a04x
3+7a07x

6+� � � �+ a0
a1

�
3a03x

2+6a06x
5+9a09x

8+� � � �� : (16.72)

However, we are not so interested in the motion of a single particle. What we

wish to derive are the half width and half energy spread of a bunch at di�erent times.

For this, we have to solve an envelope equation given by Eq. (16.89) below with the

space charge coeÆcient nspch set to zero. However, that is a nonlinear equation which is

diÆcult to tackle. Instead, we try to extract the bunch length energy from the solution

we obtained in Eqs. (16.71) and (16.72). To accomplish this, we introduce an ensemble

of beam particles at the phase ellipse. This can be easily done by writing out the general

solution of the di�erential equation [Eq. (16.57)] by a taking a linear combination of the

Eq. (16.71) or (16.72) and another solution of the di�erential equation. Thus, we have

�p(x) =c��0
(
cos 

"
�x
�
1 + a04x

3 + a07x
6 + � � �

�
� a0
a1

�
1 + a03x

3 + a06x
6 + � � �

�#

� sin 

"p
3a0
a1

�
1 + a03x

3 + a06x
6 + � � �

�#)
; (16.73)

��(x) =c��0
(
cos 

"�
1+4a04x

3+7a07x
6+� � �

�
+
a0
a1

�
3a03x

2+6a06x
5+9a09x

8+� � �
�#

+ sin 

"p
3a0
a1

�
3a03x

2+6a06x
5+9a09x

8+� � �
�#)

; (16.74)

where �p3a0=a1 is included purely for convenience and the relation �� = �d�p=dx
still holds. One constant in these equation is c��0, the maximum phase o�set of the

phase ellipse at x = 0. In fact, it solely determines bunch area or the area of the ellipse

(Exercise 16.4). The other constant is the phase angle  , which represents di�erent

particles on the ellipse in the longitudinal phase space.
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As a �rst application, at x = 0, Eq. (16.73) becomes

�p(x) = �c��0 a0a1
�
cos +

p
3 sin 

�
; (16.75)

whose maximum occurs when  = �=3. This gives the normalized energy spread at

transition c�p0 = �2a0
a1

c��0 ; (16.76)

agreeing with what we have in Eq. (16.70). The phase spread at transition is trivial

because only the cosine term in Eq. (16.74) contributes.

Now let us proceed up to the order x. The energy spread in Eq. (16.73) gives

�p(x) = �c��0 a0a1
�
cos 

�
1 +

a1
a0
x

�
+
p
3 sin 

�
: (16.77)

For the maximum,

cos =
1

2

�
1 +

3a1
4a0

x

�
and sin =

p
3

2

�
1� a1

4a0
x

�
: (16.78)

Thus, the half energy spread is

c�p(x) = c�p0 �1 + a1
4a0

x

�
= c�p0

"
1� �

31=6�2
�
1
3

� x# : (16.79)

There is no O(x) in the correction to the half bunch length. The next order is O(x2):

��(x) = c��0
"
cos 

�
1� a0

2a1
x2
�
� sin 

p
3a0
2a1

x2

#
; (16.80)

whose maximum occurs when  = O(x2). Thus the half bunch length becomes

c��(x) = c��0 �1� a0
2a1

x2
�
= c�p0

"
1 +

31=6�2
�
1
3

�
8�

x2

#
: (16.81)

Higher orders in x of the half energy spread and half bunch length of the bunch can

therefore be computed.

It is evident that from time jtj in the nonadiabatic region to the time when transition

is crossed, the shrinkage of the bunch length is of order (jtj=Tc)2 and is therefore small,
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while the increase in energy spread is of order (jtj=Tc) which is much larger. This

explains why in the simple model of Sec. 16.3, we can just approximate the bunch

length at transition to be the bunch length at the nonadiabatic time. On the other

hand, we have to compute the increase in energy spread within the nonadiabatic region

more accurately.

There is an important comment on why that particular combination of independent

solutions are used for the phase ellipse in Eq. (16.73) or (16.74). We choose the trajectory

in Eqs. (16.71) and (16.72) as one of the independent solution so as to ensure that at the

time when transition is crossed the bunch ellipse will be tilted to the correct amount, so

that the half bunch length and half energy spread will be correct. Any other combination

is also a valid solution of the di�erential equation, but it will lead to the bunch ellipse to

be tilted di�erently at transition, which in turn implies the possible unphysical situation

that the bunch does not �t the rf bucket when it is well below transition.

In passing, we list the exact solution for the phase o�set and energy o�set:

�p(x) = Ay1=3
�
cos 1J�1=3(y) + sin 1N�1=3(y)

�
;�

2

3

�1=3

��(x) = Ay2=3
�
cos 1J2=3(y) + sin 1N2=3(y)

�
; (16.82)

where y = 2
3
jxj3=2, and J and N are the Bessel and Neumann functions or order 2

3
or

�1
3
. Here, A and  1 are the two constants. Unlike our solution, this solution is valid for

all x. When we are very far from transition, or jxj � 1, the Bessel functions have the

asymptotic expansions:

J�(y) �
r

2

�y
cos

�
y � �

2

�
� +

1

2

��
;

N�(y) �
r

2

�y
sin

�
y � �

2

�
� +

1

2

��
: (16.83)

Thus, �p and �� are 90Æ out of phase, or the bunch �ts the bucket far from

transition. Therefore, at the moment when transition is crossed, the bunch ellipse will

be tilted to the right amount so that one can read o� the correct half bunch length and

the half energy spread. This explains why we have chosen the combination of J�1=3 and

N�1=3 for �p in Eq. (16.82) instead of, for example, J�1=3 and J1=3. This method of

asymptotic behavior cannot be applied to the power-series solution we pursuit in this

section, because the power-series solution is only valid when jxj < 1.
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16.5 Space Charge Mismatch

In the previous section, the equations of motion are symmetric about the transition time.

This means that the bunch becomes shorter and taller while approaching transition, but

restores its shape after crossing transition. Most important of all, the equilibrium bunch

length is continuous across transition and the bunch area remains constant. However, the

introduction of space charge breaks this symmetry. Below transition, the space charge

force is repulsive. The rf potential well is distorted, resulting in the lengthening of the

bunch. But the situation is di�erent above transition. With the switching of sign of the

slippage factor, the space charge force changes sign also. Now it becomes attractive. It

adds constructively to the rf focusing force and the equilibrium bunch length becomes

shorter instead. This is illustrated in the top plot of Fig. 16.2.

A space charge parameter can easily be de�ned. We have derived in Eq. (3.19) the

reactive force on a beam particle due to a reactive impedance, which is proportional to

the gradient of the longitudinal beam pro�le. If we assume a parabolic beam pro�le, this

reactive force is linear. Thus, for a linearized rf voltage, the space charge force implies

the replacement,h
eVrf cos�s

i
�� �!

h
eVrf cos�s

i
��� 3�Nbr0Erestg0h

2

R
2
t
c��3 �� ; (16.84)

where Nb is the number of particles per bunch with half width c�� in rf radian, r0 the

classical particle radius, and R the accelerator radius. Use has been made of the fact

that the reactive impedance is the space charge impedance Z
k
0=n = iZ0g0=(2�t


2
t
) at

transition energy as given by Eq. (3.15). Notice that cos�s changes sign from positive

to negative on crossing transition. Thus, the space charge force counteracts the rf force

below transition and enhances the rf force above. The ratio of the space charge force to

the rf force is

�spch =
3�Nbr0Erestg0h

2

R
2
t
eVrfj cos�sjc��3 : (16.85)

This ratio is, however, time dependent, because the bunch length changes with time.

One can evaluate this ratio right at transition and called it the space charge parameter.

Thus

�spch(0) =
9�3(1

3
)

16
p
2

Nbr0g0h

R

�
�tErest

Sh!0

�3=2�
h!0

�t _
t

�1=2
; (16.86)

where use has been made of Eq. (16.19). Figure 16.2 is computed according to the space

charge parameter �spch(0) = 2.
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Figure 16.2: Bunch length is plotted versus x, time normalized to the nonadia-

batic time Tc, across transition. Below transition (negative time), the space charge

force is repulsive, thus giving a longer equilibrium bunch length. Above transition

(positive time), the space charge force becomes attractive and therefore shortens the

equilibrium bunch length. Top plot shows the mismatch of equilibrium bunch length

across transition. A possible transition jump from x = t�=Tc to x = t+=Tc should

have bunch length matched from the beginning to the end of jump, and is therefore

asymmetric with respect to x = 0. Lower plot shows the bunch that matches to the

space charge distorted bucket below transition overshoots after crossing transition

and oscillates about the shorter equilibrium length.
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Thus, as soon as transition is crossed, the bunch will �nd itself not able to �t the rf

bucket. The bunch tumbles inside the bucket performing synchrotron oscillations in the

quadrupole mode. In the worst situation, there will be beam loss. Even if the bucket is

large enough to hold the bunch, the bunch area will increase due to �lamentation. Such

phenomenon has been observed in the Fermilab Booster, Main Ring, and the present

Main Injector. A longitudinal quadrupole damping has been installed in each of the rings

to cope with the oscillations. Such a damper consists mainly of a pickup which sends

signals of the bunch length to modify the rf voltage, which in turn damp the oscillations.

Figure 16.3 shows such a mismatched oscillation at the Fermilab Main Ring. In the top

plot, the quadrupole damper is turned o�. The lowest trace, which is green in color,

measures the bunch length by comparing the spectral signal of the third rf harmonic

to the fundamental. The bunch length goes through a minimum around 0.78 s when

transition is crossed. After that it oscillates at twice the synchrotron frequency in the

quadrupole mode with increasing amplitude, as a result of the space charge mismatch

of the equilibrium bunch lengths before and after transition. Note that the quadrupole

synchrotron period is diminishing away from transition due to the fact the slippage factor

� is increasing. In the lower plot, the quadrupole damper is turned on. The lowest trace,

which is green in color, measures the bunch length. It is evident that although there are

some quadrupole oscillations after transition, they are of much smaller amplitudes and

are completely damped later.

16.5.1 Mathematical Formulation

Mathematically, this phenomenon can be formulated as follows. As a result of Eqs. (16.84)

and (16.86), the equation of motion governing �� is modi�ed from Eq. (16.9) to

d

dt

�
1

!2
s

d��

dt

�
+��+ sgn(t)

nspchc��3 �� = 0 ; (16.87)

where nspch = �spchc��3 and is no more time dependent. In terms of the normalized time

coordinate x = t=Tc, the di�erential equation becomes

d

dx

�
1

x

d��

dx

�
+ sgn(x)��+

nspchc��3 �� = 0 : (16.88)



16-20 16. TRANSITION AND SPACE CHARGE MISMATCH

Figure 16.3: (color) A bunch is crossing transition at the Fermilab Main Ring.

The lowest (green) trace of the top plot measures the bunch length. It dips to a

minimum at � 0:78 s when transition is crossed. It then oscillates at twice the

synchrotron frequency with large amplitudes due to space charge mismatch. In the

lower plot, the quadrupole damper is turned on. Quadrupole oscillations of small

amplitudes are seen in the lowest (green) trace after transition and are completely

damped later.
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The half bunch length c��, however, satis�es a slightly di�erent di�erential equation,
d

dx

"
1

x

dc��
dx

#
+ sgn(x)c��+ nspchc��2 � x

(SN=�)
2c��3 = 0 ; (16.89)

where SN is a normalized dimensionless bunch area when the bunch ellipse is transformed

to a circle. It is related to our usual bunch area S in eV-s (true area of the tilted ellipse

not just � multiplied by the width and height) by

SN =
2h2!2

0 _
tT
2
c

�2
t 


4
t
Erest

S : (16.90)

The derivation was �rst given by S�renssen [3]. This is just an envelope equation in

the longitudinal phase space and can be derived easily (Exercise 16.6). Comparing

with the single-particle equation, Eq. (16.88), there is one extra term proportional to

the square of the emittance and inversely to the third power of the the bunch lengthc��. Such an extra last term also arises in the Kapchinskij-Vladimirskij beam envelope

equation for transverse oscillation [4]. In fact, it occurs also in the equation satis�ed

by the betatron function, where the betatron function takes the place of c�� while

the transverse emittance takes the place of (SN=�)
2. This equation cannot be solved

analytically. However, when it is far away from transition, jxj � 1, the variation of c��
with respect to x should be small, and we obtain the algebraic equation

c��4 + sgn(x)nspchc�� =
S2
N

�2
jxj : (16.91)

In the absence of space charge, nspch = 0, we recover the solution in Eq. (16.54), namely,

c�� =

�
SN
�

�1=2
jxj1=4 = h!0

�
2ST 2

c _
t
��2

t 

4
t
Erest

�1=2
jxj1=4 : (16.92)

If we wish, we may also consider this as a derivation of the half-bunch-length di�erential

equation [Eq. (16.89)], since we have already derived this expression for half bunch

length and we know that such a term proportional to
�c����3 must exist in an envelope

equation.

Equation (16.91), the quartic in bunch length, can be further simpli�ed to

�4 + sgn(x)�N0� = jxj ; (16.93)
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where the normalized bunch length � is de�ned as

c�� =

r
SN
�
� = h!0

s
2 _
tT

2
c S

��2
t 


4
t
Erest

� =

s
2h!0 _
tT

2
c Sc

��t
4t
� ; (16.94)

and the normalized space charge parameter is

�N0=nspch

�
�

SN

�3=2
=
3�2Nbr0g0h

2R

�
�tErest

Sh!0

�3=2� h!0

2��t _
t

�1=2
=
3�2Nbr0g0h

2RS
3=2
c

�
h!0

2��t _
t

�1=2
;

(16.95)

where the explicit expression of Tc has been used. In above, Sc is another commonly

used dimensionless bunch area, which is de�ned as

Sc = �\�(�
)c�� =
h!0

�Erest

S : (16.96)

Written in terms of these normalized quantities, the di�erential equation satis�ed by the

bunch length is also simpli�ed and becomes

d

dx

�
1

x

d�

dx

�
+ sgn(x)� +

�N0

�2
� x

�3
= 0 : (16.97)

Notice that c��=� is proportional to the bunch length at transition,

c��0 = 23=2h!0

31=3�(1
3
)

�
ST 2

c _
t
�2
t 


4
t
Erest

�1=2
: (16.98)

Thus, aside from a constant, � can also be considered as normalized to the bunch length

at transition. In fact, evaluated at transition without space charge, � = 2�1=23�1=3=�(1
3
) =

0:91748 radian, as indicated in Fig. 16.2. Comparing the original space charge parameter

�spch(0) in Eq. (16.86) with the normalized space charge parameter �N0, we �nd

�N0 =
8�3=2

3
�
�(1

3
)
�3 �spch(0) = 0:77233 �spch(0) : (16.99)

The lower plot in Fig. 16.2 is derived from solving Eq. (16.97) numerically starting with

a bunch that is matched to the equilibrium bunch length far below transition.

We conclude this section by listing in Table 16.1 some transition crossing properties

as well as the space charger parameters of the Fermilab Booster, Fermilab Main Ring,

and Fermilab Main Injector. We have used in the table the designed intensity of 6�1010
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for the Main Injector. At its former commissioned intensity of 4 � 1010, the space

charge parameter was �spch(0) = 0:303 only. Notice that the space charge parameter

for the Fermilab Booster is about ten times those for the Main Ring and Main Injector.

Thus, bunch-length oscillations due to space charge mismatch can be very serious at the

Booster before the installation of the quadrupole damper. In fact, this has been one of

the reasons of bunch area increases due to �lamentation after crossing transition.

Table 16.1: Some transition crossing properties and the space charge parameters

of the Fermilab Booster, Main Ring, and Main Injector.

Booster Main Ring Main Injector

Circumference 474.203 6283.185 3319.419 m

Transition 
t 5.373 18.85 21.80

Revolution frequency f0 621.157 47.646 90.220 kHz

Rf harmonic h 84 1113 588

Rf voltage Vrf 0.763 2.5 2.78 MV

Synchronous angle �s 53.6 60.0 37.6 degrees

Ramp rate _
t 406.7 109.94 163.10 s�1

nonadiabatic time Tc 0.216 3.00 2.14 ms

Number per bunch Nb 3� 1010 3� 1010 6� 1010

95% bunch area S 0.025 0.15 0.15 eV-s

Rms bunch length at 
t 0.237 0.335 0.217 ns

Space charge g0 4.5 4.89 4,34

jZk
0=njspch 29.9 2.63 1.72 Ohms

space charge parameter �spch(0) 2.117 0.277 0.455

16.6 Transition Jump

A transition jump is a way to go around transition crossing so that all the demise can be

avoided [5, 6, 7]. It consists of the following steps. At some time t = t� < 0, the currents

of some quadrupoles are triggered so that 
t of the ring is sudden raised and the beam

becomes far below transition (usually �
t � �1). Next, at some time t = t+ > 0, these

quadrupoles are triggered back to their original currents and the 
t of the ring returns to
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its original value. However, at this moment the beam is far above (usually �
t � 1) the

original 
t already. Because we need to avoid the bunch-length mismatch due to space

charge, we need to make sure that the equilibrium bunch lengths at t� and t+ are equal.

This means that jt�j < t+, or the transition jump will be asymmetric about t = 0. This

is illustrated in the top plot of Fig. 16.2 (see also Exercise 16.7).

It is important to understand that a transition jump scheme does not really elimi-

nate the crossing of transition. This is because when the transition gamma is returned

to its original value by triggering the quadrupoles the second time, the beam particles

that were below transition suddenly �nd themselves above transition. In other words,

transition is crossed by changing suddenly the value of 
t of the lattice instead of ramp-

ing the particles. However, crossing transition this way is much faster than ramping,

usually faster by a factor of more than 10. The e�ective _
t is therefore very large and the

e�ective nonadiabatic time becomes very small. The manipulation of the quadrupoles

at t = t� can be much slower because there is no transition crossing during that ma-

nipulation. We win here because the demise of crossing transition will not have enough

time to develop. On the other hand, changing the lattice of the accelerator ring so fast

can bring about other problems also. One possibility is a sudden increase in dispersion

resulting in a sudden increase in the horizontal beam size which may lead to beam loss.

Recently, Visnijic has been able to limit the propagation of this dispersion wave by the

installation of a three-quadrupole cell [8].

In the nonadiabatic region, the particles near the head/tail of the bunch will be

gaining/losing excess energy than the synchronous particle. The momentum spread of

the bunch may be increased by such an extent that the momentum acceptance will be

passed and beam loss occurs. There is a suggestion to add a third or second harmonic

to the rf wave so that the latter becomes 
at within the length of the bunch. In this way

all particles in the bunch will accelerate equally and the excess increase in momentum

spread will be suppressed reducing most of the particle loss. This method had been

applied to the former Fermilab Main Ring [9].
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16.7 Exercises

16.1. Derive the variation of the nonadiabatic time Tc and the rms time and energy

spreads of a bunch right at transition with respect to the synchronous phase �s
and the ramping rate _
t, as given in Eq. (16.30).

16.2. Show that the time evaluation of the phase o�set,

��(t) = B
p
!se

i
R
!sdt ; (16.100)

where B is a constant, is valid only in the adiabatic region.

Hint: Show that the approximations made in Eqs. (16.36) and (16.37) are in

accordance with t� Tc, where Tc is the nonadiabatic time.

16.3. Show that the half bunch length and half energy spread given by Eqs. (16.52) and

(16.53) can also be obtained by relation from the phase equation:

c�� =
hj�j!0

�2E0!s
d�E ; (16.101)

together with the assumption of linear time variation of �=E0.

16.4. (1) If f(x) and g(x) are two independent solutions of the di�erential equation

(16.57), show that the Wronskian W (f; g) � f(x)g0(x)� f 0(x)g(x) is independent

of x and can therefore be evaluated at any x, especially at x = 0.

(2) The solution can be written as

�p = B [f(x) cos + g(x) sin ] ;

�� = �B [f 0(x) cos + g0(x) sin ] ;
(16.102)

where B is a constant. Show that these two equations trace out an ellipse by

varying  , with the ellipse area A given by

A2 / (f 2 + g2)(f 0
2
+ g0

2
)� (ff 0 + gg0)2 : (16.103)

(3) Show that the right side of Eq. (16.103) is equal to the Wronskian W (f; g)

and the bunch area is therefore conserved and is determined only by the constant

B.

16.5. Show that the power-series expansion of the Eqs. (16.82) gives exactly the same

solution as Eqs. (16.73) and (16.74). Note that  in the two solutions can be

di�erent.



16-26 16. TRANSITION AND SPACE CHARGE MISMATCH

16.6. (1) Using as canonical coordinates

�� and p =
h!0

�2
Erest

�E ; (16.104)

derive the envelope equation for ~� =
ph��2i far away from transition:

�~�+ !2
s
~�+

!2
snspchc��3 ~�� E3

0

~�3
= 0 ; (16.105)

where the half length of the bunch is c�� =
p
5~� for the parabolic distribution.

The symbol nspch=c��3 is the ratio of the space charge force to the rf force de�ned
in Eqs. (16.85) and (16.87),

E0 =
p
h��2ihp2i � hp��i2 (16.106)

is proportional to the longitudinal emittance, and !s is the angular synchrotron

frequency. Then convert the envelope equation to one for the half bunch lengthc��.
(2) Near transition, !2

s = t=T 3
c = x=T 2

c , where Tc is the nonadiabatic time. Because

of the rapidly varying !2
s , show that in the former derivation we need to make the

substitution
1

!2
s

d2c��
dx2

�! d

dx

 
1

!2
s

dc��
dx

!
: (16.107)

Then derive the envelope equation of Eq. (16.89).

16.7. A transition jump is to be designed for the Fermilab Main Injector with a total

jump of �
t = 2:0. Because of space charge mismatch of the bunch length near

transition, the jump will be asymmetric; i.e., jt�j < t+, where t� is the start-

jump time before transition and t+ the end-jump time after transition. Using

Eq. (16.93), compute t�, t+, �
t�, and �
t+, where the latter are, respectively,

the amounts of jump from t = t� to t = 0 and from t = 0 t = t+. For the Main

Injector, the ramp rate across transition is _
t = 163:1 s�1 and the nonadiabatic

time is Tc = 2:14 ms.
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