
Chapter 2

LONGITUDINAL PHASE SPACE

2.1 Momentum Compaction

A bunch of charged particles has a spread of energy because of many reasons, for ex-

ample, random quantum excitation which changes the energy of the particles randomly

(for electrons and ultra-high energy protons only), intrabeam scattering which is just

Coulomb scattering among the particles, Touschek scattering [1] which is large-angle

Coulomb scattering which converts the transverse momentum of a particle into longi-

tudinal, and, most important of all, a means to counter collective instabilities through

Landau damping. In an accelerator ring or storage ring, particles with di�erent energies

have di�erent closed orbits, their lengths are given by

C = C0

�
1 + �0Æ +O(Æ

2)
�
; (2.1)

where Æ is the fractional spread in momentum and C0 is the orbit length of the so-

called on-momentum particle. The proportionality constant �0 is called the momentum-

compaction factor of the accelerator ring. The fraction momentum spread is related to

the lowest order fractional energy spread �E=E0 by

Æ =
�p

p0
�

1

�2
0

�E

E0

: (2.2)

where p0, E0, and v0 = �0c are the momentum, energy, and longitudinal velocity of the

on-momentum particle. The momentum-compaction factors of most accelerators and
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storage rings have the property that �0 > 0, implying that particles with larger energy

will travel along longer closed orbits with more radial excursions. A longer closed orbit

may imply relatively longer revolution period T . On the other hand, a higher energy

particle travels with higher velocity v and the period of revolution will be relatively

shorter. The result is a slip in revolution time �T (either positive or negative) every

turn with respect to the on-momentum particle. The particles inside the bunch will

therefore spread out longitudinally and the bunch will disintegrate unless there is some

longitudinal focusing force like the rf voltage. Since T = C=v, a slip factor � can be

de�ned by
�T

T0
=

�C

C0

�
�v

v0
� �Æ ; (2.3)

where T0 is the revolution period of the on-momentum particle. Thus, to the lowest

order in the fractional momentum spread, we have

� = �0 �
1


2
0

; (2.4)

where E0 = 
0mc
2 and m is the rest mass of the particle. Higher orders of the slip factor

will be given in Chapter 18.

For most electron rings and high energy proton rings, the particle velocity v is

extremely close to c, the velocity of light, so that the revolution-time slip is dominated

by the increase in orbit length. We therefore have � � �0 and we call the operation above

the transition energy. For low-energy hadron rings, the velocity term may dominate

making � < 0 and we say the operation is below the transition energy, implying that

the velocity change of an o�-momentum particle is more important than the change in

orbit length. The higher-momentum particle, having a larger velocity, will complete a

revolution turn in less time than the on-momentum particle, resulting in a forward slip.

Obviously, transition occurs when the velocity change is just as important as the change

in orbit length, or � = 0. The transition energy is de�ned as Et = 
tmc
2 and 
t = �

�1=2
0

.

There are also rings, like the 1.2 GeV CERN Low Energy Antiproton Ring (LEAR)

and many newly designed ones [2] that have negative momentum-compaction factors or

�0 < 0. In these rings, lower momentum particles have longer closed orbits or larger

radial excursions than higher momentum particles. Negative momentum compaction

implies an imaginary 
t and the slip factor will always be negative, indicating that the

ring will be always below transition. Some believe that such rings will be more stable

against collective instabilities [3]. Design and study of negative momentum compaction

rings have been an active branch of research in accelerator physics lately [4].
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Figure 2.1: Three particles are shown in the longitudinal phase planes. (a) Initially,

they are all at the rf phase of 180Æ and do not gain or lose any energy. (b) One

turn later, the on-momentum particle, denoted by 2, arrives with the same phase

of 180Æ without any change in energy. The particle with lower energy, denoted by

1, arrives earlier and gains energy from the positive part of the rf voltage wave at

phase < 180Æ. The particle with higher energy, denoted by 3, arrives late and loses

energy because it sees the rf voltage wave at phase > 180Æ.

In order to have the particles bunched, a longitudinal focusing force will be required.

This is done by the introduction of rf cavities. Consider three particles arriving in the

�rst turn at exactly the same time at a cavity gap, where the rf sinusoidal gap voltage

wave is at 180Æ, as shown in Fig. 2.1a. All three particles are seeing zero rf voltage and

are not gaining any energy from the rf wave. The drawing of the rf voltage wave implies

that the rf voltage at the cavity gap was positive a short time ago and will be negative a

short time later. Assume that the ring is above transition or � > 0. One turn later, the

on-momentum particle, denoted by 2 in the �gure, arrives at the cavity gap at exactly

the time when the rf sinusoidal voltage curve is again at 180Æ and gains no energy. At

this moment, the positions of the three particles and the rf wave are shown in Fig. 2.1b.

The lower energy particle, denoted by 1, arrives at the gap earlier by �1, which we call

time slip. It sees the positive part of the rf voltage and gains energy. For the second

turn, it arrives at the gap earlier by �1 + �2, where �2 < �1 because the particle energy

has been raised in the second passage. This particle will continue to gain energy from

the rf every turn and its turn-by-turn additional time slip diminishes. Eventually, this
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particle will have an energy higher than the on-momentum particle and starts to arrive

at the cavity gap later turn after turn, or its turn-by-turn time slip becomes negative.

Similar conclusion can be drawn for the particle, denoted by 3 in the �gure, that has

initial energy higher than the on-momentum particle. With the rf voltage wave, the

o�-momentum particles will oscillate around the on-momentum particle and continue to

form a bunch. In reality, the particles lose an amount of energy Us every turn due to

synchrotron radiation. This is compensated by shifting the rf phase slightly from 180Æ

to �s = sin�1(Us=Vrf), where Vrf is the rf voltage (the peak value of the rf wave), so that

the on-momentum particle will see the rf voltage at the phase �s when traversing the

cavity gap. This particle is also called the synchronous particle.

2.2 Equations of Motion

To measure the charge distribution in a bunch, we choose a �xed reference point s0 along

the ring and put a detector there. A particle in a bunch is characterized longitudinally

by � , the time it arrives at s0 ahead of the synchronous particle. We record the amount

of charge arriving when the time advance is between � and �+d� . The result is e�(�)d� ,

where �(�) is a measure of the particle distribution� and e is the particle charge. The

actual linear particle density per unit length is �(�) = �(�)=v, where v is the velocity

of the synchronous particle. Note that this charge distribution is measured at a �xed

point but at di�erent times. Therefore, it is not a periodic function of � . In one turn,

the change in time advance is

�� = ��T0Æ : (2.5)

The negative sign comes about because the period of a higher-momentum particle is

larger above transition (� > 0) and therefore its time of arrival slips. During that turn,

the energy gained by the particle relative to the synchronous particle is

�E = eVrf(sin�� sin�s)� [U(Æ)� Us] + ChF
k
0 i � C0hF

k
0si ; (2.6)

where the subscript s stands for synchronous particle. The �rst term on the right is

the sinusoidal rf voltage and the second term is the radiation energy. The third is the

average wake force de�ned in the previous section due to all beam particles ahead; it

can therefore be written as, according to Fig. 2.2,

�Note the change in notation. In Chapter 1, � represents charge density. From here on, � represents

particle number density so that
R
�(�)d� = Nb the total number of particles in the bunch. The charge

density becomes e�.
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Figure 2.2: Top: the synchronous particle 0 arriving at the location s at the ring.

Middle: test particle 2 arriving at s with a time advance � and seeing the wake

left by source particle 1 (bottom) arriving at s with a time advance � 0. Thus test

particle is z � v0(�
0� �) behind source particle. The total wake force acting on test

particle 2 is the superposition of the wake forces contributed by all particles in the

bunch with time advances � 0 � � .

hF
k
0 (�)i = �

e2

C

Z 1

�

d� 0�(� 0)W 0
0(�

0 � �) : (2.7)

Notice that we have written, for convenience, the wake function as a function of time

advance (� 0 � �) instead of distance z � v0(�
0 � �), with v0 denoting the velocity of the

synchronous particle. There is an approximation here because the particles inside the

bunch travel with slightly di�erent velocity. The error, which is less then �L�v, is small,

where �L is the total bunch length in time and �v is the maximum velocity spread in

the bunch. This is actually the rigid-bunch approximation. In the same approximation,

we do not distinguish between C and C0, the path length of an o�-momentum particle

and that of the synchronous particle. The signs in Eq. (2.7) and in front of hF
k
0
(�)i in

Eq. (2.6) can be checked by seeing whether there is an energy loss when substituting,

the wake of, for example, a real resistance W 0
0
(�) = RÆ(�). The synchronous phase �s

in Eq. (2.6) is a parameter chosen to balance the energy loss in a storage ring, or to

accomplish a designed rate of increase of energy in an accelerator. The average wake

force acting on the synchronous particle, hF
k
0si, can be obtained from Eq. (2.7) by letting

� = 0.
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The two equations of motion are related because the momentum spread is related

to the energy spread by Æ = �E=(�2
0E0), and the rf phase seen is related to the time

advance,

�� �s = �h!0� ; (2.8)

where !0=(2�) = 1=T0 is the revolution frequency of the ring for the synchronous particle

and h is the rf harmonic, which is the number of oscillations the rf wave makes during one

revolution period. The negative sign on the right side of Eq. (2.8) comes about because

when the particle arrives earlier or � > 0, it sees a rf phase earlier than the synchronous

phase �s (see Fig. 2.1). Writing as discrete di�erential equations, they become

d�

dn
= �

�T0
�2
0

�E

E0

; (2.9)

d�E

dn
= eVrf[sin(�s � h!0�)� sin�s]� [U(Æ)� Us] + C0

�
hF

k
0 i � hF

k
0si
�
: (2.10)

To simplify future mathematical derivations, a continuous independent variable is

needed instead of the discrete turn number n. Time is not a good variable here because

particles with di�erent energies complete one revolution turn in di�erent time intervals.

Even for one particle, its energy oscillates with synchrotron motion and so is the time

for consecutive revolution turns. We choose instead s, the distance measured along the

closed orbit of the synchronous particle, because the increase in s per revolution turn

is always the length of the closed orbity C0 of the synchronous particle, regardless of

the momentum o�set of the beam particle under consideration. This transition from

discrete turn number n to the continuum is a good approximation, because in reality it

takes a particle many (� 50 to 100 in electron rings and � 200 to 1000 in proton rings)

revolution turns to complete a synchrotron oscillation, and it takes the beam a large

number of turns for an instability to develop.

With � and �E as the canonical variablesz, the equations of motion for a particle

in a small bunch become
d�

ds
= �

�

v0�2
0E0

�E ; (2.11)

d�E

ds
=
eVrf
C0

h
sin(�s � h!0�)� sin�s

i
�
U(�E)� Us

C0

+ hF
k
0 (�; s)i � hF

k
0s(s)i : (2.12)

yIn subsequent chapters, the subscript `0' in C0, E0, v0, �0, 
0, etc for the synchronous particle may

be omitted in order to simplify the notation.
zThis set of canonical variables should not be used if the accelerator is ramping. Instead the set

�=!0 and �E=!0 is preferred
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Although one may also use t = s=v0 as the independent variable, we want to emphasize

that this t is the time describing the synchronous particle and is not the time variable

for an o�-energy particle. Thus, the independent variable s is quite di�erent from the

time variable.

Let us �rst neglect the wake potential and also the small di�erence between the

energy lost by the o�-momentum particle U(Æ) and the energy lost by the on-momentum

particle Us. For small amplitude oscillations, the two equations combine to give

d2�

ds2
�

2��heVrf cos�s

C2
0
�2
0
E0

� = 0 : (2.13)

Therefore, the bunch particles are oscillating with the angular frequency !s0 = �s0!0,

where

�s0 =

s
�
�heVrf cos�s

2��2
0
E0

(2.14)

is called the synchrotron tune or the number of synchrotron oscillations a particle makes

in one revolution turn, and !s0 = �s0!0 the synchrotron angular frequency. The subscript

\0" indicates that these are the unperturbed small-amplitude values or with the wake

potential turned o�. The negative sign inside the square root implies that �s should

be near 180Æ in the second quadrant above transition (� > 0), but near 0Æ in the �rst

quadrant below transition (� < 0). Synchrotron motion is slow and the synchrotron tune

is usually of the order of 0.001 to 0.01. When the oscillation amplitude becomes larger,

the rf sine wave cannot be linearized. The focusing force is smaller and the synchrotron

tune �s for maximum phase excursion �̂ will become smaller as is shown in Fig. 2.3

according to

�s(�̂) =
��s0

2K(sin 1

2
�̂)

; (2.15)

where

K(x) =

Z �=2

0

dup
1� x2 sin2 u

(2.16)

is the complete elliptic integral of the �rst kind. This prediction has been veri�ed

experimentally at the Indiana University Cyclotron Facility (IUCF) Cooler Ring [5]. In

the small-amplitude approximation, we have �s(�̂) = �s0

�
1� 1

12
�̂2
�
. In other words,

there will be a spread in the synchrotron tune among the particles in the bunch, which

will be very essential to the Landau damping of the collective instabilities to be discussed

later. As the oscillation amplitude continues to increase, a point will be reached when
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Figure 2.3: Plot showing the synchrotron frequency decreasing to zero at the edge

of the rf bucket.

there is no more focusing provided by the rf voltage anymore. This boundary in the

� -�E phase space provides the maximum possible bunch area allowed and is called

the rf bucket holding the bunch. Any particle that goes outside the bucket will be

lost. The equation of motion is, in fact, exactly that of a pendulum, whose frequency

of oscillation decreases with amplitude. If we start the pendulum motion at its rest

position with too large a kinetic energy, the pendulum will no longer be in oscillatory

motion. It will wrap around the point of support performing librations instead. This

critical angular amplitude of the pendulum is ��, exactly the same for the rf bucket.

Figure 2.4 illustrates some stationary buckets (when the synchronous phase �s = 180Æ

above transition) and moving or accelerating buckets (when �s is between 90Æ and 180Æ).

The �gure also shows the trajectories of libration outside the buckets. The horizontal

axis is the rf phase (instead of the time advance used in Fig. 2.1); the trajectories
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therefore move clockwise (instead of counter-clockwise in Fig. 2.1).

If the radiation energy is neglected, the two equations of motion are derivable from

the Hamiltonian

H = �
�

2v0�2
0
E0

(�E)2�
eVrf
C0h!0

�
cos(�s� h!0�)� cos �s� h!0� sin�s

�
+ V (�) ; (2.17)

with the aid of the Hamiltonian equations

8>><
>>:

d�

ds
=

@H

@�E
;

d�E

ds
= �

@H

@�
:

(2.18)

The potential of the wake force is given by

V (�) =
e2

C0

Z �

0

d� 00
�Z 1

�1

d� 0�(� 0)W 0
0(�

0 � � 00)�

Z 1

�1

d� 0�(� 0)W 0
0(�

0)

�
: (2.19)

The second term in the squared brackets comes from hF
k
0si, the energy lost by the

synchronous particle due to the wake potential of the vacuum chamber. In Eq. (2.17),

the cos�s term is added to adjust the rf potential to zero for synchronous particles

(� = 0). For small-amplitude oscillations, the Hamiltonian simpli�es to

H = �
�

2v0�2
0E0

(�E)2 �
!2

s0�
2

0
E0

2�v0
� 2 + V (�) ; (2.20)

where !s0 = �s0!0, the synchrotron angular frequency for small amplitudes, is given by

Eq. (2.14).

In an electron ring, synchrotron radiation may provide damping to many collec-

tive instabilities. Because this damping force is dissipative in nature, strictly speaking

a Hamiltonian formalism does not apply. However, the synchrotron radiation damping

time is usually very much longer than the synchrotron period. The fast growing instabil-

ities will evolve to their full extent before the damping mechanism becomes materialized.

Here, we are interested mostly in studying those instabilities that grow within one radi-

ation damping time of the ring. For a time period much less than the radiation damping

time, radiation can be neglected and the Hamiltonian formalism therefore applies.
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Figure 2.4: The trajectories in the longitudinal phase space above the transition

energy. Top plot shows the stationary buckets when the synchronous phase �0 =

180Æ. Middle and lower plots show the moving or accelerating buckets when the

synchronous phases are, respectively, �0 = 150Æ and 120Æ. The moving buckets

shrink when the synchronous phase decreases from 180Æ towards 90Æ. Notice that

the horizontal axis is the rf phase (instead of arrival time in Fig. 2.1); the directions

of the trajectories are therefore clockwise above transition.
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2.3 Vlasov Equation

We would like to study the evolution of a bunch that contains, say, 1012 particles. The

Hamiltonian in Eq. (2.17) has to be modi�ed to include 1012 sets of canonical variables

in order to fully describe the bunch. The description of the motion of a collection of

1012 particles is known as the particle approach, and is often tackled in the time domain.

However, what are of interest to us are the collective behaviors of the bunch like the

motion of its centroid, the evolution of the particle distribution, etc. In other words, we

are studying here the evolution of various modes of motion of these collective variables.

For 1012 particles, there are 1012 modes of motion. However, we will never be interested in

those modes whose wavelengths are of the order of the separation between two adjacent

particles inside the bunch, because they correspond to motions of very high frequencies,

and those motions are microscopic in nature. What we would like to study are the

macroscopic modes of the bunch, or those having wavelengths of the same order as the

length of the bunch or the radius of the vacuum chamber. Sometimes, we may even

want to study modes with wavelengths one tenth or one hundredth of the bunch length

or beam pipe radius, but de�nitely not down to the microscopic size like the distance

between two neighboring beam particles. In other words, we go to the frequency domain

and look at the di�erent modes of motion of oscillation of the bunch as a whole. Our

interest is on those few modes that have the lowest frequencies or longest wavelengths.

This direction of study is known as the mode approach.

When collisions are neglected, the basic mathematical tool for the mode approach is

the Vlasov equation or the Liouville theorem [6]. It states that if we follow the motion of

a representative particle in the longitudinal or � -�E phase space, the density of particles

in its neighborhood is constant. In other words, the distribution of particles  (�;�E; s)

moves in the longitudinal phase space like an incompressible 
uid. Mathematically, the

Vlasov equation reads

d 

ds
=
@ 

@s
+
d�

ds

@ 

@�
+
d�E

ds

@ 

@�E
= 0 : (2.21)

In terms of the Hamiltonian, it becomes

@ 

@s
+ [ ;H] = 0 ; (2.22)

where [; ] denotes the Poisson bracket. Here, the time of early arrival � and the energy

o�set �E are the set of canonical variables chosen. The Poisson bracket is therefore

[ ;H] =
@ 

@�

@H

@�E
�

@ 

@�E

@H

@�
: (2.23)
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Together with the Hamiltonian equations of Eq. (2.18), Eq. (2.21) is reproduced.

If radiation is included in the discussion, one must extend the Vlasov equation to

the Fokker-Planck equation [7]

d 

ds
= A

@

@�E
(�E ) +

D

2

@2 

@�E2
; (2.24)

where A and D are related, respectively, to the damping and di�usion coeÆcients.

2.4 Coasting Beams

A coasting beam is not bunched. There is no rf voltage and therefore no synchrotron

oscillation. Thus, there is no synchronous particle. For the longitudinal position, we

can make reference with respect to a designated point in the accelerator ring. For the

energy o�set, we can make reference with respect to the average energy change for all the

on-momentum particles. Here, we cannot talk about bunch modes. Instead, the linear

density of an excitation of the beam can be described much better by an harmonic wave,

f1(�; t) � ein��
t ; (2.25)

where � is the azimuthal angle around the ring measured from a point of reference, n is

a revolution harmonic or n modulations of the longitudinal linear density when viewed

from the top of the accelerator ring at a �xed time t, and 
 is the angular velocity of the

wave. The harmonic n = 0 should be excluded because it will violate charge conservation

since the integral of f1 over the whole ring does not vanish when n = 0. The excitation

of Eq. (2.25) is a snap-shot view, similar to taking a picture of the beam above the

accelerator ring. Thus the linear density is a periodic function of � with period 2�. The

linear density can therefore be expanded as a Fourier series and the excitation f1(s; t) is

just a Fourier component. To describe a beam particle, we use the canonical variable z

and �E, where z = R� with R = C0=(2�) being the mean radius of the on-momentum

closed orbit. Here, z is just the longitudinal distance ahead of the point of reference at

time t and �E is the energy o�set. Since we are using snap-shot description, the real

time t can be used as the continuous independent variable. The equations of motion are

dz

dt
= �

��E

v0�2
0
E0

; (2.26)

d�E

dt
= �

U � Us

T0
+ v0hF

k
0
(z; t)i � v0hF

k
0s(t)i ; (2.27)
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where v0 and T0 are, respectively, the velocity and revolution period of the on-momentum

particle, hF
k
0 (z; t)i is the average longitudinal wake force acting on the beam particle

under consideration and hF
k
0s(t)i is the average of the average longitudinal wake force

acting on all the on-momentum particles. The subtraction of hF
k
0s(t)i is necessary, be-

cause sometimes the average wake force may have a dc resistive term and we do not

want to include it in our discussion since it is usually compensated, for example, by a

dc gap voltage. Otherwise, the beam will continue to lose energy and will not be able

to stay inside the vacuum chamber.

When synchrotron radiation is neglected, the equations of motion can be derived

from the Hamiltonian

H = �
��E

2v0�2
0E0

+

Z z

0

h
hF

k
0
(z0; t)i � hF

k
0s(t)i

i
v0dz

0 : (2.28)

For the beam distribution  (z;�E; t) in the longitudinal phase space, the Vlasov equa-

tion becomes
@ 

@t
+
dz

dt

@ 

@z
+
d�E

dt

@ 

@�E
= 0 ; (2.29)

where dz=dt and d�E=dt are given by the equations of motion. It is important to realize

that dz=dt is not the longitudinal velocity v of the particle having energy o�set �E.

Instead, it represents the phase slip (in length) per revolution period T0.
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2.5 Exercises

2.1. The Hamiltonian of Eq. (2.17) describes motion in the longitudinal phase space,

when the wake potential V (�) is not included. With the e�ects of the wake poten-

tial neglected, �nd the �xed points of the Hamiltonian above and below transition,

and determine whether they are stable or not. The separatrices are the contours

of �xed Hamiltonian values that pass through the unstable �xed points. They sep-

arate the region of libration motion from rotation motionx. Plot the separatrices.

2.2. The canonical variables �0 and �E0 evaluated at `time' s = 0 become �1 and �E1

at an in�nitesimal time �s later according to

�1 = �0 +
@H

@�E0

�s ; �E1 = �E0 �
@H

@�0
�s : (2.30)

Consider the small phase-space area element d�0d�E0 = Jd�1d�E1. Show that

the Jacobian J = 1 to the �rst order in �s, implying that the area surrounding a

given number of particles does not change in time, which is Liouville Theorem. It

is possible to prove J = 1 to all orders in �s using canonical transformation. See,

for example, H. Goldstein, Classical Mechanics, Addison-Wesley, Chapter 8-3.

2.3. Starting from the Hamiltonian in Eq. (2.17) with the synchronous phase �s = 0 or

� but in the absence of the wake potential, derive the synchrotron tune, Eq. (2.3), of

a particle having an rf phase amplitude �̂. Repeat the derivation for any arbitrary

synchronous phase.

xLibration implies periodic motion in the phase space, similar to a sine wave going from �1 to +1.

Rotation motion in phase space implies to-and-fro oscillatory motion.
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