
Chapter 3

POTENTIAL-WELL DISTORTION

3.1 Static Solution

The wake potential a�ects the particle bunch in two ways. Static perturbation changes

the shape of the bunch, while time-dependent perturbation can lead to instability of the

bunch. This is analogous to quantum mechanics, where time-independent perturbation

shifts the energy levels while time-dependent perturbation causes transition. In this

chapter, we are going to study stationary bunch distributions, or distributions in
uenced

by the time-independent perturbation of the wake potential. This alteration of bunch

distribution is called potential-well distortion.

From the Vlasov equation depicted in Eq. (2.21), it is evident that the solution

for the stationary particle distribution  (�;�E) in the longitudinal phase space must

satisfy

[ ;H] = 0 ; (3.1)

or it is suÆcient that  is a function of the Hamiltonian,

 =  (H) : (3.2)

Recall that the Hamiltonian of a particle with small amplitude synchrotron oscillations

is

H = � �

2v�2E0
(�E)2 � !2

s0�
2E0

2�v
� 2 + V (�) ; (3.3)
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which describes the motion of a beam particle in the potential well

U(�) = �!
2
s0�

2E0

2�v
� 2 + V (�) ; (3.4)

where �E and � are the energy o�set and time advance of the beam particle, while the

synchronous particle has energy E0, velocity
� v = �c, bare synchrotron angular frequency

!s0, and slip factor �. Here, the potential-well contributed by the wake function is

[Eqs. (2.7), (2.12), and (2.18)],

V (�) =
e2

C0

Z �

0

d� 00
Z 1

� 00

d� 0�(� 0)W 0
0(�

0 � � 00) ; (3.5)

where C0 is the length of the designed closed orbit, W 0
0 is the longitudinal monopole

wake function, and �(�) is the linear particle density under the in
uence of the wake.

When the e�ects of the wake potential is removed, this is just a parabolic potential well.

In the presence of the wake potential, the potential well is distorted and the distribution

of the beam particle in the longitudinal phase space is therefore modi�ed. As will be

seen below, a purely reactive wake potential, meaning that the coupling impedance is

either inductive or capacitive, will modify the parabolic potential in such a way that the

potential well remains symmetric. Correspondingly, the distorted particle distribution

will also be head-tail symmetric, assuming that the original particle distribution in the

rf potential along is symmetric. A wake potential with a resistive component, however,

will a�ect the symmetry of the parabolic potential well so that the bunch distribution

will no longer be head-tail symmetric.

3.2 Reactive Force

Consider a particle beam with linear density �(s; t) traveling in the positive s direction

with velocity v inside a cylindrical beam pipe of radius b with in�nitely-conducting walls.

The axis of the beam coincides with the axis of the beam pipe. The beam is assumed

to be rigid; therefore � = �(s � vt). We also assume at this moment that the beam is

uniformly distributed transversely within a radius a which does not vary longitudinally.

We are interested in the longitudinal electric �eld Es seen by the beam particles at the

axis of the beam. To compute that we invoke Faraday's law,

~r� ~E = � @

@t
~B ; (3.6)

�Here, we drop the subscript "0" for v and � for the sake of convenience.
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or in the integral form, I
~E �d` = � @

@t

I
~B �d ~A : (3.7)

In above, the closed path of integration of the electric �eld ~E is along two radii of the

beam pipe at s and s+ ds together with two length elements at the beam axis and the

wall of the beam pipe, as illustrated in Fig. 3.1. The area of integration of the magnetic

v

a

b

s+dss

Es

Figure 3.1: (color) Derivation of the space charge longitudinal electric �eld Es

experienced by a beam particle in a beam of radius a in an in�nitely conducting

beam pipe of radius b.


ux density ~B is the area enclosed by the closed path. Now, the left side of Eq. (3.7)

becomes

L. S. = Esds+
e�(s+ds�vt)

2��0

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
� e�(s�vt)

2��0

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
; (3.8)

while the right side

R. S. = � @

@t

�0e�(s�vt)v
2�

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
ds : (3.9)

Assumption has been made that the open angle 1=
 of the radial electric �eld is small

compared with the distance ` over which the linear density changes appreciably, or

b=
 � `. Here, 
 = E0=(mc
2) and m is the rest mass of the beam particle. In terms of

the the squared-bracketed expressions in Eqs. (3.8) and (3.9), we can de�ne

g0 = 2

�Z a

0

rdr

a2
+

Z b

a

dr

r

�
= 1 + 2 ln

b

a
; (3.10)
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which is a geometric factor depending on the geometry of the beam and the beam

pipe, and it will deviate from Eq. (3.10) if we relax, for example, the restriction of the

transverse uniformity of the particle distribution. Combining the above, we arrive at

Es +
eg0
4��0

@�

@s
= v2

e�0g0
4�

@�

@s
; (3.11)

or

Es = � eg0
4��0
2

@�

@s
; (3.12)

which is the space charge force experienced by a particle in a beam. In the reduction

from Eq. (3.10) to Eq. (3.12), use has been made of the relation �0�0 = c�2.

The �rst application is a longitudinal harmonic wave

�1(s; t) / ei(ns=R�
t) ; (3.13)

perturbing a coasting beam of uniform linear density �0, where n is a revolution har-

monic, R is the radius of the accelerator ring, and 
 is the frequency of the wave. It will

be shown in Chapter 6 that 
 � n!0 = nv=R; the di�erence comes from the perturba-

tion of the coupling impedance. Thus, �1 is roughly a function of s � vt. Substitution

into Eq. (3.12) results in the voltage

V = �EsC0 =
ineZ0cg0

2
2
�1 (3.14)

seen by a beam particle per accelerator turn. The perturbing wave constitutes a per-

turbing current I1 = e�1v. Therefore, the space charge impedance per harmonic seen

is
Z
k
0

n

�����
sp ch

=
iZ0g0
2
2�

; (3.15)

which is to be compared with Eq. (1.36). From Eq. (3.12), the space charge force

experienced by a beam particle at position s and time t becomes

F (s; t) =
ie2v

2�

Zk
0

n

�����
sp ch

@�(s; t)

@s
: (3.16)

Since an inductive impedance can be viewed as a negative space charge impedance, we

can write the force due to a general reactive impedance as

F (s; t) =
ie2v

2�

Z
k
0

n

�����
reactive

@�(s; t)

@s
: (3.17)
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When the position of the beam particle is measured in terms of time advanced � ahead

of the synchronous particle, the particle linear distribution �(�; t), which is normalized

to the total number of beam particles, is related to �(s; t) by

�(s; t)ds = �(�; t)d� or
@�(s; t)

@s
=

1

v2
@�(�; t)

@�
: (3.18)

The reactive force exerted on a beam particle becomes

F (�; t) =
ie2

2�v

Zk
0

n

�����
reactive

@�(�; t)

@�
: (3.19)

Of course, the above expression can also be obtained by substituting the reactive wake

function

W 0
0(�) = Æ0(�)

"
i

!0

Z
k
0

n

#
reactive

(3.20)

directly into Eq. (2.7).

The second application is on potential-well distortion. For a bunch, the head has

a negative slope or @�=@� < 0, while the tail has a positive slope or @�=@� > 0. For a

space charge impedance, the head of the bunch is therefore accelerated and gains energy,

while the tail decelerated and loses energy. Below transition, the head arrives earlier

after one turn while the tail arrives later, resulting in the spreading out of the bunch.

The space charge force therefore distorts the rf potential by counteracting the rf focusing

force. On the other hand, an inductive force enhances the rf focusing. The opposite is

true above transition.

3.3 Haissinski Equation

For an electron bunch, because of the random quantum radiation and excitation, the

stationary distribution should have a Gaussian distribution in �E, or

 (�;�E) =
1p
2��E

exp

�
��E2

2�2
E

�
�(�) ; (3.21)

where �E is the rms beam energy spread determined by synchrotron radiation. Noting

Eq. (3.2) and the Hamiltonian in Eq. (3.3), we must have

 (�;�E) / exp

�
v�2E0

��2
E

H

�
: (3.22)
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The linear density or distribution �(�) is obtained by an integration over �E. Since

Hamiltonian H depends on �(�) [see, for example, Eqs. (2.19) and (2.20)], we �nally

arrive at a self-consistent equation for the linear density,

�(�) = �(0) exp

"
�
�
!s0�

2E0

��E

�2
� 2

2
+
e2�2E0

�T0�2
E

Z �

0

d� 00
Z 1

� 00

d� 0�(� 0)W 0
0(�

0 � � 00)

#
:

(3.23)

This is called the Haissinski equation [1], where the constant �(0) is obtained by nor-

malizing to the total number of particles in the bunch:Z
d��(�) = N : (3.24)

The solution will give a linear distribution that deviates from the Gaussian form, and

we call this potential-well distortion. Since the rf voltage is modi�ed, the angular syn-

chrotron frequency also changes from !s0 to the perturbed incoherent !s accordingly.

For a purely resistive impedance Z
k
0 (!) = Rs with the wake function W 0

0(z) =

RsÆ(z=v), the equation can be solved analytically giving the solution [3]

�(�) =

p
2=�e��

2=(2�2� )

�R��fcoth(�RN=2)� erf[�=(
p
2�� )]g

; (3.25)

where

�� =
j�j�E

�2!s0E0
; �R =

e2�2E0Rs

�T0�2
E

; (3.26)

and

erf(x) =
2p
�

Z x

0

e�t
2

dt (3.27)

is the error function. For a weak beam with j�RjN . 1, the peak beam density occurs

at

� =
�RNp
2�

�� : (3.28)

This peak moves forward above transition (�R > 0) and backward below transition

(�R < 0) as the beam intensity increases. This e�ect comes from the parasitic loss of

the beam particle which is largest at the peak of the linear density �(�) and smallest

at the two ends. Those particles losing energy will arrive earlier/later than the syn-

chronous particle in time above/below transition and the distribution will therefore lean

forward/backward. Such bunch pro�les are plotted in Fig. 3.2 for �RN = �10, �5, 0,



3.3 Haissinski Equation 3-7

Figure 3.2: Plot of bunch pro�les between �5 �s for �RN = �10, �5, 0, 5, and 10,

according to the solution of the Haissinski equation when the impedance is purely

resistive. These pro�les are normalized to ��
p
�=2 when integrated over � . It is

evident that the pro�le leans forward above transition (�R > 0) and backward below

transition (�R < 0).

5, and 10. In the plots, the linear densities are normalized to ��
p
�=2 when integrated

over � .

When the longitudinal impedance is purely inductive,W 0
0(z) = LÆ0(z=v), the double

integrals can be performed and the Haissinski equation becomes

�(�) = ke��
2=(2�2� )��L�(�) ; (3.29)

where k is a positive constant and �L = e2�2E0L=(�T0�
2
E
). The above can be rewritten

as

�(�)e�L�(�) = ke��
2=(2�2� ) : (3.30)

The right side is an even function of � and so must be the left side, �e�L�. Thus,

it appears that the distorted distribution � is also an even function of � . The linear

distribution will remain left-right symmetric. Thus, the reactive part of the impedance

will either lengthen or shorten the bunch, while the resistive part will cause the bunch

to lean forward or backward. When j�LjN . 1, we can iterate,

� � ke��
2=(2�2� )

�
1� k�Le

��2=(2�2� )
�
: (3.31)
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Without the impedance term, k in Eq. (3.29) represents the particle density at the center

of the bunch. Now for �L > 0, Eq. (3.31) says that e�ectively k becomes smaller. In

other words, the distribution spreads out, or the e�ective rms bunch length becomes

larger than �� . This is the situation of either a repulsive inductive impedance force

above transition or a repulsive capacitive force (L < 0) below transition. On the other

hand, for an attractive inductive force below transition or an attractive capacitive force

above transition, �L < 0. The bunch will be shortened.

For a general wake function, the Haissinski equation can only be solved numerically.

The equation, however, can be cast into the more convenient form (Exercise 3.2)

�(�) = � exp

"
�
�
!s0�

2E0

��E

�2
� 2

2
� e2�2E0

�T0�2
E

Z 1

0

d� 0�(�+� 0)

Z � 0

0

d� 00W 0
0(�

00)

#
: (3.32)

Notice that �(�) on the left side only depends on the � on the right side evaluated in

front of � . We can therefore solve for � at successive slices of the bunch by assigning

zero or some arbitrary value to � at the very �rst slice (the head) and some value to the

constant �. The value of � is varied until the proper normalization of � is obtained.

The longitudinal wake potential of the damping rings at the SLAC Linear Collider

(SLC) has been calculated carefully. Using it as input, the Haissinski equation is solved

numerically at various beam intensities. The results are shown as solid curves in Fig. 3.3

along with the actual measurements. The agreement has been very satisfactory [2].

3.4 Elliptical Phase-Space Distribution

An easier way to compute the bunch length distorted by the reactive impedance is to

consider the elliptical phase-space distribution

 (�;�E) =
3N j�jp�

2��2!s0E0�̂ 30

s
�̂ 20 �

�
�

�2!s0E0

�2

�E2 � �� 2 (3.33)

for an electron bunch, where �̂0 is the unperturbed half bunch length (in time advance).

The distribution vanishes when the expression inside the square root of Eq. (3.33) be-

comes negative. The maximum half energy spread d�E derived from Eq. (3.33),

d�E =
�2!s0E0�̂0

j�j ; (3.34)
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Figure 3.3: Potential-well distortion of bunch shape for various beam intensities for

the SLAC SLC damping ring. Solid curves are solution of the Haissinski equation

and open circles are measurements. The horizontal axis is in units of unperturbed

rms bunch length �z0, while the vertical scale gives y = 4�e�(z)=[V 0
rf (0)�z0]. The

beam is going to the left.

is exactly that given by the phase equation (2.11). The maximum half energy spread

is a constant determined by synchrotron radiation, while the half width of the bunch

derived from Eq. (3.33),

�̂ =
�̂0p
�

(3.35)

is determined by the parameter �. This distribution when integrated over �E gives the

normalized parabolic linear distribution

�(�) =
3N

p
�

4�̂ 30

�
�̂ 20 � �� 2

�
: (3.36)



3-10 3. POTENTIAL-WELL DISTORTION

With the reactive wake function W 0
0(z) = LÆ0(z=v), the Hamiltonian of Eq. (2.20) can

therefore be written as a quadratic in �E and � :

H = � �

2v�2E0
(�E)2 � !2

s0�
2E0

2�v
� 2 � e2L

C0
�(�) : (3.37)

Substituting for the linear density �(�), the Hamiltonian becomes

H =
!2
s0�

2E0

2�v

"
�
�

�

�2!s0E0

�2

�E2 � � 2(1�D�3=2)

#
; (3.38)

where

D =
3e2N�vL

2!2
s0�

2E0C0�̂ 30
; (3.39)

and the constant term involving �̂0 has been dropped. To be self-consistent, the expres-

sion of  in Eq. (3.33) must be a function of the Hamiltonian. Comparing Eq. (3.33)

with Eq. (3.38), we arrive at

� = 1�D�3=2 (3.40)

or �
�̂

�̂0

�3

=

�
�̂

�̂0

�
+D : (3.41)

This cubic can be solved by iteration. First we put �̂ =�̂0 = 1 on the right side. If

D > 0, we �nd �̂ =�̂0 > 1 or the bunch is lengthened. If D < 0, it is shortened. The

former corresponds to either an inductive force above transition or a capacitive force

below transition. The latter corresponds to either an inductive force below transition

or a capacitive force above transition. This is illustrated in the �rst row of Fig. 3.4,

where we notice that the energy spread of the bunch is unchanged for various types of

perturbation.

For a proton bunch, the energy spread is also modi�ed but the bunch area remains

constant. The phase-space distribution has to be rewritten as

 (�;�E) =
3N j�j

2��2!s0E0�̂ 30

s
�̂ 20 �

1

�

�
�

�2!s0E0

�2

�E2 � �� 2 : (3.42)

Now we have (Exercise 3.6)

�̂ =
�̂0p
�

and d�E =
p
�d�E0 : (3.43)
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E∆E∆E∆

ELECTRON

RINGS τττ

E∆E∆E∆

τRINGS

PROTON
τ τ

D = 0 D > 0D < 0
Bunch shortening Bunch lengtheningUnperturbed

Figure 3.4: Potential well distortion of the bunch shape in the longitudinal phase

space. D > 0 corresponds to either an inductive perturbation above transition or

a capacitive perturbation below transition, while D < 0 implies either an inductive

perturbation below transition or a capacitive perturbation above transition. Top row

is for electron rings where the energy spread remains constant as a result of radiation

damping. Bottom row is for proton rings where the bunch area is constant.

Again comparing with the Hamiltonian, we arrive at the quartic equation�
�̂

�̂0

�4

= 1 +D

�
�̂

�̂0

�
: (3.44)

This is illustrated in the bottom row of Fig. 3.4.

3.5 Synchrotron Tune Shift

When the potential well is distorted, the frequency of oscillation will be changed also.

For an elliptical bunch distribution in the longitudinal phase space, the synchrotron

oscillation frequency shift can be easily extracted from the Hamiltonian in Eq. (3.38).

We get �
!s
!s0

�2

=

�
1 +

�!s
!s0

�2

= 1�D�3=2 : (3.45)
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As a �rst approximation, the synchrotron frequency shift �!s or synchrotron tune shift

��s is given by
�!s
!s0

=
��s
�s0

� �D
2
= � 3e2N�vL

4!2
s0�

2E0C0�̂ 30
; (3.46)

where !s0=(2�) is the bare or unperturbed synchrotron frequency and �s0 = !s0=!0 is the

bare or unperturbed synchrotron tune. We see that an inductive vacuum chamber will

lower/increase the synchrotron tune above/below transition. For the longitudinal space

charge self-force, the synchrotron tune will be shifted upward/downward above/below

transition. Notice that this is the tune shift for an individual particle and is called the

incoherent tune shift.

For a more general bunch distribution and a more general impedance, we resort to

the equations of motion [Eqs. (2.11) and (2.12)], from which we obtain

d2�

ds2
+
�2s0
R2

� = � �

v�2E0

h
hF k

0 (�; s)i � hF k
0 (0; s)i

i
: (3.47)

The wake force on the right side is

hF k
0 (�; s)i � hF k

0 (0; s)i = � e2

C0

Z 1

�1

d� 0�(� 0; s)

�
W 0

0(�
0 � �)�W 0

0(�
0)

�
: (3.48)

To obtain the synchrotron tune shift in the dipole mode, we linearize the wake force, or

hF k
0 (�; s)i � hF k

0 (0; ; s)i =
�
e2

C0

Z 1

�1

d� 0�(� 0; s)W 00
0 (�

0)

�
� : (3.49)

The synchrotron tune shift can therefore be read out easily as

��s
�s0

=
e2�R

4��2s0v�
2E0

Z 1

�1

d� 0�(� 0; s)W 00
0 (�

0) : (3.50)

As a check, let us substitute for the inductive wake potential W 0
0(�) = LÆ0(�). The

integral can be performed to get

��s
�s0

=
e2�RL

4��2s0v�
2E0

@2�

@� 2

����
�=0

: (3.51)

If we substitute for the parabolic bunch distribution of Eq. (3.36), we get back the tune

shift result obtained in Eq. (3.46).

If we average Eq. (3.47) over all the beam particles, we obtain the equation of motion

of the center-of-mass of the bunch and we can compute the coherent synchrotron tune
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shift of the bunch due to potential-well distortion. However, there is another contribution

to this coherent tune shift from the dynamic part of the perturbation which we are going

into later (see Sec. 9.1.1 below). This dynamic contribution will cancel the potential-well

contribution, resulting in no coherent synchrotron tune shift in the dipole mode when the

bunch intensity is weak and the wake is no longer than the bunch spacing. Physically,

this dipole mode is a rigid rotation of the bunch in the longitudinal phase space. The

wake �eld pattern, and therefore the potential-well distortion, moves with the bunch.

Thus, the motion of the bunch as a whole is not a�ected by the wake �eld at all. On the

other hand, the picture for incoherent motion is about a beam particle moving inside

the bunch with the bunch center at rest. An individual particle can therefore sample a

variation of the wake �eld while executing synchrotron oscillation. Thus, to demonstrate

the e�ect of space charge impedance or inductive impedance, the coherent quadrupole

mode of the synchrotron oscillation should be measured. If the incoherent synchrotron

tune is desired, a Schottky scan of the beam is necessary.

3.6 Potential-Well Distortion Compensation

Potential-well distortion can often be a serious problem in the operation of an accelerator

or storage ring. If the distortion opposes the rf bunching, a much larger rf voltage

and hence rf power will be required to counteract the distortion. Even when such

a higher compensating rf voltage is available, the rf bucket may have been so much

distorted that its useful area has very much been reduced. An example is the Los Alamos

Proton Storage Ring (PSR), which stores an intense proton beam at the kinetic energy

of 797 MeV. The ring has a transition gamma of 
t = 3:1, implying that the operation of

the ring is below transition. The longitudinal space charge force is therefore repulsive in

nature and tends to lengthen the bunch. This longitudinal repulsive force will counteract

the rf bunching force. We will study how serious the potential-well distortion is and a

possible way to cure the problem.

The PSR has a circumference of 90.2 m. It receives chopped proton beams from

a linac cumulatively in 1000 to 2000 turns. The beam is bunched by an rf buncher

to the desired length and is then extracted for experimental use. The rf buncher is

of rf harmonic h = 1, or there is only one bunch. The revolution frequency and the rf

frequency are both 2.796 MHz. A typical store consists of a bunch consisting of 3:2�1013
protons, of half length �̂ = 133:5 ns, occupying roughly two third of ring, and a half
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energy spread of d�E=E0 = 0:005. If space charge is neglected, to keep such a bunch

matched to the rf bucket, the synchrotron tune is

�s0 =
j�jd�E0

!0�2E0�̂
= 0:000402 ; (3.52)

and the required rf voltage is

Vrf =
2��2E0�

2
s0

ej�jh = 6:60 kV : (3.53)

Now let us estimate the space charge e�ect [4]. The 95% (or full) normalized transverse

emittance is 50 � 10�6 �m. From this and the ring lattice, the g0 factor has been

estimated to be

g0 = 1 + 2 ln
b

a
� 3:0 ; (3.54)

where a is the beam radius and b is the beam pipe radius. The longitudinal space charge

impedance is therefore  
Zk
0

n

!
spch

= i
Z0g0
2
2�

� i196 
 : (3.55)

According to Eq. (3.19), a particle with an arrival time � ahead of the synchronous

particle sees an electric �eld

Es spch = � e

2��c

�����Zk
0

n

�����
spch

d�

d�
; (3.56)

where �(�) is the linear particle density of the bunch and is normalized to the number

of particles in the bunch by integrating over � . This electric �eld comes from the

longitudinal space charge e�ect and is in the direction of the motion of the bunch. It is

positive in the head half of the bunch (� > 0) and negative in the tail half (� < 0). It

is therefore repulsive. Assume a parabolic distribution,

�(�) =
3N

4�̂

�
1� � 2

�̂ 2

�
; (3.57)

so that the electric �eld becomes linear in � . The particle will gain in a turn the potential

Vspch = Es spchC0 =
3eN

2!0�̂ 2

�����Zk
0

n

�����
spch

�

�̂
= 4:82

�

�̂
kV ; (3.58)
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according to its position in the bunch. This potential is of roughly the same size as the

rf voltage required if there is no space charge. Thus, in the presence of space charge, we

need to increase Vrf from 6.60 kV to approximately 6:60 + 4:82 = 11:42 kV; nearly 42%

of the rf voltage has been spent to counteract the space charge force. One must realize

that the rf buncher at PSR was capable to deliver only 12 kV in 1997. Although the rf

buncher has been upgraded to about 18 kV, there is also a goal to increase the beam

intensity to 5� 1013 protons as well. It is important to point out that rf compensation

to space charge can never be exact. The rf force is sinusoidal while the space charge

force is linear if the linear distribution is parabolic. Although the space charge force

may become sinusoidal-like if the unperturbed linear beam distribution is Gaussian, the

frequency content is still very di�erent from the rf focusing force.

3.6.1 Ferrite Insertion

It has been proposed that if ferrite rings (also called cores) are installed inside the vacuum

chamber, the proton beam will see an extra inductive impedance from the ferrite, and

hopefully this inductive impedance will cancel the capacitive space charge impedance of

the beam [5, 6]. Toshiba M4C21A ferrite rings are used, each having an inside diameter

di = 12:7 cm, outside diameter do = 20:3 cm, and thickness t = 2:54 cm. The relative

magnetic permeability is �0 � 70 at the PSR rotation frequency, 2.796 MHz. With nf
ferrite rings stacked together, the impedance per harmonic is

Z
k
0

n ferrite
= �iZ0!0tnf

2�c
�0 ln

do
di

= 2:93nf 
 : (3.59)

Thus, to cancel a space charge impedance per harmonic of � 300 
, about nf = 102

will be needed. Three ferrite inserts were assembled. Each consisted of a stainless-steel

pill-box cavity having an inner diameter of 20.3 cm and inner length of 75.5 cm, so

that 30 ferrite cores could be packed inside. To prevent charge buildup on the inner

surface of the cores, each of the cores were treated with a very thin (1 M
 per square)

conductive coating (Heraeus R8261) baked on the inner and outer surface. Additional

radial conducting `spokes' were added to provide conductivity from the inner surface to

the outer wall of the chamber. Solenoidal wiring was wound outside the stainless steel

container so that the magnetic permeability of the ferrite could be controlled.

Two such ferrite tuners or inserts were installed in the PSR in 1997. To study space

charge compensation caused by the installed inductance, two experiments, using di�erent
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bunch lengths, were completed. The designated charge con�gurations were injected into

the PSR and the longitudinal pro�les (bunch length and shape) were observed, digitized,

and recorded using signals from a wide-band wall current monitor at the end of each

625-�s injection period. The experiments were performed for two bunch lengths: � 50 ns

(half length) with 4:0 � 1012 particles and � 150 ns (half length) with 1:2 � 1013. The

rf voltage was set to 7 kV in both cases. The resulting waveforms are compared with

detailed particle tracking simulations in Fig. 3.5 for the two bunch lengths. The solid

curve in the top left plot represents the bunch shape with the full e�ect of the inserted

inductance (zero bias). The dotted curve corresponds to data with the e�ect of the

inductance diminished by 900-A dc bias. The di�erence of peak heights is about 16%.

Simulations performed with assumed injection momentum spread �p=p = 0:08% are

shown in the top right plot. They predict an rms bunch length of 19 ns, but increasing

to 22 ns when the ferrite bias current is raised to 900 A with the inductance reduced

to 34% of its unbiased value. We see that the experiment measurements are consistent

with the simulation predictions. Similar conclusion can be drawn for the long-bunch-

length situation shown in bottom plots of Fig. 3.5. We see that bunch lengths have been

reduced with the ferrite insertion, indicating that the space charge impedance has been

cancelled to a certain extent.

It is unfortunate that the change in synchrotron frequency could not be measured

to give another demonstration of the cancellation of space charge. This is mainly due to

the slow synchrotron oscillation in the PSR. During the whole accumulation and storage

time, the beam particles usually make less than one synchrotron oscillation. A similar

space charge compensation experiment had also been performed at the KEK PS Main

Ring, but with a much lower intensity of 2 to 9� 1011 protons per bunch [7]. The beam

kinetic energy was 500 MeV with a space charge impedance Z
k
0=n = i310 
. Instead of

ferrite, the inductor inserts or tuners were loaded with a Met-Glass-like material called

Finemet. Since the coherent synchrotron frequency in the dipole mode is not a�ected by

space charge, the coherent frequency of the quadrupole synchrotron oscillation was mea-

sured instead as a function of bunch intensity. The inductor tuners were not equipped

with biased current coil to control the permeability of the Finemet. In order to alle-

viate the e�ect of the Finemet when required, mechanical copper shorts were installed

across the inductor tuners instead. As shown in Fig. 3.6, with several inductor tuners

installed, the coherent frequency was less dependent on intensity without the mechanical

shorts than with the mechanical shorts, indicating that the space charge force had been

partially cancelled by the Finemet cores.
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Figure 3.5: Measured (left) and simulated (right) pulse shapes after 625 �s, for

injected pattern widths of 50 ns with 4:0 � 1012 protons (bottom) and 150 ns with

1:2 � 1013 protons In both cases, Vrf = 7:5 kV. Solid: no bias, dotted: 900-A bias

or a reduction of �0 by factor or 34%.
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Figure 3.6: Left: Measured frequency shifts of the quadrupole oscillations versus

beam intensity at KEK with and without Finemet insertion. Right: New KEK re-

sults of quadrupole oscillation frequency versus beam intensity with Finemet tuners

on, 1
3 on, and o�.

The second experiment at the PSR is to measure the onset of vertical instability

using a short-stripline beam-position monitor. With a 3:0�1013 proton beam stored, the

rf voltage was lowered until vertical instability was registered. This signal comes about

when the rf bucket is not large enough to hold the bunch so that some protons spill

out into the bunch gap. These protons in the gap trap electrons preventing them to be

cleared and causing a transverse e-p instability. Many previous performance points (blue

squares) are plotted in Fig. 3.7 as the required buncher voltage versus beam intensity.

The historical performance is roughly represented by the dashed line. The results of

this experiment are indicated by red triangles. It was found that less buncher voltage

was required to sustain the beam in the presence of the inductor inserts. For example,

at the highest intensity that could be reached during the experiment, 3 � 1010 protons

in the beam, only 6.9 kV was required, which amounted to a � 60% reduction of what

had previously been necessary to maintain stability. This result indicates that the space

charge impedance has been compensated to a certain extent by the ferrite cores installed

in the vacuum chamber. Thus, less rf voltage will be required to bunch the proton beam.

At the same time, it was found that the bunch gap was the cleanest ever observed.

This experiment, however, has far from being perfect. First, there are only a few

points measured (the red triangles in Fig. 3.7); the indication is therefore not very con-

vincing. Second, the bunch lengthening when the solenoidal bias was turned on had
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Figure 3.7: The performance of the PSR: the required buncher voltage plotted

against the intensity of the beam. The dashed line shows roughly the historical per-

formance before upgrade. The red triangles are results of the experiment discussed

here. For example, with the ferrite insertion without solenoidal bias, only 6.9 kV is

required to hold a bunch containing 3�1013 protons, which is about 1
3 less than the

historical value.

only been minimal and not spectacular (see Fig. 3.5), leaving behind the question of

the eÆciency about the inserts|how much space charge had actually been compen-

sated. Third and worst of all, a longitudinal instability had been observed, although at

the intensity of 3:2 � 1013 protons, this instability had been small and appeared to be

tolerable. Because of these and other reasons, the ferrite inserts were removed during

the upgrade. After the upgrade, when the machine was turned on, however, the per-

formance was very poor as is indicated by the dot-dashed line in Fig. 3.7. In order to

improve the performance, the inductor inserts were once again installed. But with the

upgraded beam intensity, the small longitudinal instability had become so intense that

the beam pro�les became heavily distorted and there was a considerable of beam loss.

This instability together with its eventual cure will be discussed in detail in Sec. 6.3.
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3.7 Exercises

3.1. Show that the geometric factor de�ned Eq. (3.10) for the longitudinal space charge

impedance becomes

g0 =
1

2
+ 2 ln

b

a
; (3.60)

when the longitudinal electric �eld opposing the beam is averaged over all the

beam particles. In above, b is the radius of the beam pipe and a is the transverse

radius of the beam.

3.2. Transform the Haissinski equation (3.23) according to the following:

(1) Notice that the integral over � 00 can be rewritten asZ �

0

d� 00 ! �
Z 1

�

d� 00 + constant ; (3.61)

where the constant can be absorbed into the normalization constant �(0) which

we rename by �.

(2) The integration in the � 0-� 00 space is in the 0Æ to 45Æ quadrant between the

lines � 00 = � and � 00 = � 0. Translate the � 0 and � 00 axes so that the region of

integration is now between the � 0-axis and the 45Æ line � 00 = � 0.

(3) Integrate over � 00 �rst from 0 to � 0; then integrate over � 0.

(4) Change the variable � 00 to � 0�� 00. Now the Haissinski equation takes the more

convenient form of Eq. (3.32), or

�(�) = � exp

"
�
�
!s0�

2E0

��E

�2
� 2

2
� e2�2E0

�T0�2
E

Z 1

0

d� 0�(�+� 0)

Z � 0

0

d� 00W 0
0(�

00)

#
:

(3.62)

3.3. The bunch in the Fermilab Tevatron contains N = 2:7 � 1011 protons and has

a designed half length of �̂ = 2:75 ns. The ring main radius is R = 1 km and

the slip factor is � = 0:0028 at the incident energy of E0 = 150 GeV. The rf

harmonic is h = 1113 and the rf voltage is Vrf = 1:0 MV. Assume a broadband

impedance centered at !r=(2�) � 3 GHz, quality factor Q = 1, and shunt impe-

dance Rs = 250 k
.

(1) Show that the frequencies that the bunch samples are much less than the res-

onant frequency of the broadband, so that the asymmetric beam distortion driven

by Re Zk
0 can be neglected.
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(2) Using only the inductive part of the impedance at low frequencies, compute

from Eq. (3.44) the equilibrium bunch length as a result of potential-well distor-

tion.

(3) Electron bunches are usually very short. If an electron bunch of rms bunch

length 2 cm is put into the Tevatron, show that its spectrum will sample the

resonant peak of Re Zk
0 and may su�er asymmetric distortion. Compute the asym-

metric factor �RN given by Eq. (3.25) and determine whether the asymmetry is

large or not.

3.4. From Eq. (3.41) for an electron bunch, show that there are two solutions for

the perturbed bunch length due to distortion by a capacitive impedance when

�2=33=2 < D < 0. Which one is physical? When D < �2=33=2, there is no solu-

tion. At this critical situation, the bunch shortening ratio is 3�1=2.

Hint: Transform Eq. (3.41) to

4x3 � 3x =
33=2

2
D (3.63)

and substitute for x = sin �. What is the right side in terms of �?

3.5. When the coupling impedance is purely resistive,

(1) derive the potential-well distorted linear distribution, Eq. (3.25).

(2) Show that when the intensity of the bunch is weak, the peak of the distribution

is given by Eq. (3.28).

Hint: Transform the Haissinski equation to a di�erential equation,

�0 +
�

�2
�

�� �R�
2 = 0 : (3.64)

Solve the equation and determine �(0).

3.6. Starting from Eq. (3.42), �lling in the missing steps, derive the quartic equation

(3.44) for the proton half bunch length under the in
uence of a purely reactive

longitudinal impedance.



3-22 3. POTENTIAL-WELL DISTORTION



Bibliography

[1] J. Haissinski, Nuovo Cimento 18B, 72 (1973).

[2] K.L.F. Bane and R.D. Ruth, Proc. IEEE Conf. Part. Accel., Chicago, 1989, p.789.

[3] A.G. Ruggiero, IEEE Trans. Nucl. Sci. NS-24, 1205 (1977).

[4] K.Y. Ng and Z. Qian, Instabilities and Space-Charge E�ects of the High-Intensity

Proton Driver, Fermilab Report FN-659, 1997, AIP Conference Proceedings 435,

Workshop on Physics at the First Muon Collider and at the Front End of the Muon

Collider, Ed. S. Geer and R. Raja, Batavia, IL, Nov. 6-9, 1997, p. 841.

[5] J.E. GriÆn, K.Y. Ng, Z.B. Qian, and D. Wildman, Fermilab Report FN-661, 1997.

[6] Plum, M.A., Fitzgerald, D.H., Langenbrunner, J., Macek, R.J., Merrill, F.E., Neri,

F, Thiessen, H.A., Walstrom, P.L., GriÆn, J.E., Ng, K.Y., Qian, Z.B., Wildman,

D., and Prichard, B.A. Jr., Phys. Rev. ST Accel. Beams, 2, 064201 (1999).

[7] Koba, K., Machida, S., and Mori, Y., KEK Note, 1997 (unpublished); Koba, K.,

these proceedings; Koba, K., et al, Phys. Sci. Instr., 70, 2988 (1999).

3-23



3-24 BIBLIOGRAPHY


